Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Performance evaluation of feature extraction to improve the classification of PTM in C-glycosylation using XGBoost Damayanti, Damayanti; Rosyking Lumbanraja, Favorisen; Junaidi, Akmal; Sutyarso, Sutyarso; Nugroho Susanto, Gregorius; Hendrastuty, Nirwana
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.8466

Abstract

Protein function is regulated by an important mechanism known as post-translational modification (PTM). Covalent and enzymatic protein modifications are added during protein biosynthesis, and such alterations significantly influence the regulation of gene activity and the functionality of proteins. Glycosylation, one type of PTM, involves adding sugar groups to a protein's structure. Numerous illnesses, such as diabetes, cancer, and the flu, have been linked to glycosylation. Therefore, it is critical to predict the presence of glycosylation, whether it occurs or not. Currently, predicting glycosylation sites is still done manually using biological methods, which require repeated experiments and a significant amount of time. To address these challenges, it is essential to rapidly develop computational data models using machine learning methods. In this study, the extreme gradient boosting (XGBoost) method is implemented, and C-glycosylation data is obtained from the publicly accessible UniProt website. The objective is to enhance the accuracy of C-glycosylation prediction using the XGBoost method. Feature extraction is performed using amino acid index (AAindex), composition, transition, and distribution (CTD), solvent AccessiBiLitiEs (SABLE), hydrophobicity, and pseudo amino acid composition (PseAAC) to improve accuracy. The minimum redundancy maximum relevance (MRMR) method is applied for feature selection. The findings of the study demonstrate that the PTM C-glycosylation prediction achieved 100%.
Co-Authors - Damayanti Adawiyah, Laila Admi Syarif Aflaha Asri Ahyarudin Akbar, Mohammed Raihan Akmal Junaidi Amelia Jasmine Andrian, Rico Annisa Rizqiana Ardiansyah Ardiansyah Aristoteles, Aristoteles Asmiati Asmiati Astria Hijriani Astria Hijriani Aulia Putri Ariqa Ayu Amalia Bambang Hermanto Damayanti Damayanti Danu Sasmita Desti Fatmalasari Destian ade anggi Sukma Dian Kurniasari Didik Kurniawan Dwi Kartini, Dwi Dwi Sakethi Dwi Sakethi, Dwi Eliza Fitri Elly Lestari Rusitati Erdi Suroso Fanni Lufiana Fanni Lufiana Febi Eka Febriansyah Fitriyana, Silfia Hadi, Normi Abdul Hamim Sudarsono . Hdiana, Yazid Zinedine Heningtyas, Yunda Ilman, Igit Sabda Indah Pasaribu Ira Hariati Br Sitepu Irawati, Anie Rose Jasmine, Amelia Jihan Aferiansyah Junaidi Junaidi Junaidi Junaidi Kristina Ademariana Kurnia Muludi Kurnia Muludi Kurnia Muludi Lilies Handayani M. Juandhika Rizky Machudor Yusman Manurung, Yunita Rosalina Megawaty, Dyah Ayu Meria Nensi Muhammad Reza Faisal, Muhammad Reza Muhammad Rizki Muhaqiqin, Muhaqiqin Muliadi Mustofa Usman Nadila Rizqi Muttaqina Naurah Nazhifah Nirwana Hendrastuty Nova Ayu Lestari Siahaan Nugroho Susanto, Gregorius Nuning Nurcahyani Nurdin, Muhaymi Nurhasanah Nurhasanah Parabi, M. Iqbal Prabowo, Rizky Pratama, Rinaldo Adi Priyambodo Priyambodo Priyambodo Priyambodo Qory Aprilarita Rahmat Safe'i Rangga Agustiantino Reza Aji Saputra RM Sulaiman Sani Rosdiana, Siti Rudy Herteno Rudy Herteno Rusitati, Elly Lestari Saragih, Triando Hamonangan Shofiana, Dewi Asiah Sholehurrohman, Ridho Sintiya Paramitha Siti Aisyah Solechah Siti Rosdiana Su'admaji, Arif Susanto, Gregorius Nugroho Sutyarso Sutyarso Sutyarso, - Syangap Diningrat Sitompul TANJUNG, AKBAR RISMAWAN Tiyara Saghira Tristiyanto Tristiyanto Wamiliana Warsono Warsono Warsono Warsono Warsono YOHANA TRI UTAMI, YOHANA TRI Zuliana Nurfadlilah