p-Index From 2021 - 2026
6.172
P-Index
This Author published in this journals
All Journal FORUM STATISTIKA DAN KOMPUTASI Media Statistika Statistika JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI IPTEK The Journal for Technology and Science CAUCHY: Jurnal Matematika Murni dan Aplikasi Sosioinforma International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics JOIN (Jurnal Online Informatika) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Penelitian Pertanian Tanaman Pangan BAREKENG: Jurnal Ilmu Matematika dan Terapan SINTECH (Science and Information Technology) Journal MIND (Multimedia Artificial Intelligent Networking Database) Journal Jurnal Aplikasi Statistika & Komputasi Statistik FIBONACCI: Jurnal Pendidikan Matematika dan Matematika Inferensi International Journal of Advances in Data and Information Systems InPrime: Indonesian Journal Of Pure And Applied Mathematics Majalah Ilmiah Matematika dan Statistika (MIMS) Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Enthusiastic : International Journal of Applied Statistics and Data Science Prosiding Seminar Nasional Official Statistics Jurnal Natural Eduvest - Journal of Universal Studies Xplore: Journal of Statistics PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND OFFICIAL STATISTICS Parameter: Jurnal Matematika, Statistika dan Terapannya Scientific Journal of Informatics Journal of Mathematics, Computation and Statistics (JMATHCOS) Advance Sustainable Science, Engineering and Technology (ASSET) Indonesian Journal of Statistics and Its Applications Journal on Mathematics Education
Claim Missing Document
Check
Articles

Empirical Bayesian Method for the Estimation of Literacy Rate at Sub-district Level Case Study: Sumenep District of East Java Province A.Tuti Rumiati; Khairil Anwar Notodiputro; Kusman Sadik; I Wayan Mangku
IPTEK The Journal for Technology and Science Vol 23, No 1 (2012)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v23i1.13

Abstract

This paper discusses Bayesian Method of Small Area Estimation (SAE) based on Binomial response variable. SAE method being developed to estimate parameter in small area due to insufficiency of sample. The case study is literacy rate estimation at sub-district level in Sumenep district, East Java Province. Literacy rate is measured by proportion of people who are able to read and write, from the population of 10 year-old or more. In the case study we used Social Economic Survey (Susenas)data collected by BPS. The SAE approach was applied since the Susenas data is not representative enough to estimate the parameters at sub-district level because it’s designed to estimate parameters in regional area (in scope of a district/city at minimum). In this research, the response variable being used was logit function trasformation of pi (the parameter of Binomial distribution). We applied direct and indirect approach for parameter estimation, both using Empirical Bayes approach. For direct estimation we used prior distribution of Beta distribution and Normal prior distribution for logit function (pi) and to estimate parameter by using numerical method, i.e integration Monte Carlo. For indirect approach, we used auxiliary variables which are combinations of sex and age (which is divided into five categories). Penalized Quasi Likelihood (PQL) was used to get parameter estimation of SAE model and Restricted Maximum Likelihood method (REML) for MSE estimation. Instead of Bayesian approach, we are also conducting direct estimation using classical approach in order to evaluate the quality of the estimators. This research gives some findings, those are: Bayesian approach for SAE model gives the best estimation because having the lowest MSE value compares to the other methods. For the direct estimation, Bayesian approach using Beta and logit Normal prior distribution give a very similar result to the direct estimation with classical approach since the weight of is too large, which is about 0.905. It is also found that direct estimation using Bayesian approach with the Beta prior distribution gives better MSE than using logit normal prior distribution.
Parameter Quantile-like dalam Pendugaan Area Kecil Melalui Pendekatan Penalized- Splines Kusman Sadik
STATISTIKA: Forum Teori dan Aplikasi Statistika Vol 8, No 1 (2008)
Publisher : Program Studi Statistika Unisba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/jstat.v8i1.972

Abstract

Pada beberapa tahun terakhir ini, para statistisi mulai mengembangkan metodologi yang berkaitandengan pendugaan untuk daerah atau domain survei yang memiliki sampel kecil atau bahkan tidakmemiliki sampel satupun. Data yang diperoleh melalui teknik survei yang tepat akan sangat efektifdan memiliki sifat reliabilitas untuk menduga total atau rataan peubah tertentu. Sifat penduga yangdemikian dapat dicapai apabila data sampel dari survei mencakup daerah atau domain yang besar.Misalnya, beberapa survei ekonomi yang dilakukan di Indonesia berskala nasional. Pada survei yangdemikian banyaknya sampel rumah tangga untuk tiap kecamatan dalam suatu kabupaten sangatkecil (small area). Bahkan bisa terjadi suatu kecamatan tertentu tidak terpilih sebagai daerah surveisehingga sampel rumah tangga dari kecamatan tersebut tidak ada. Persoalannya adalah bagaimanamenduga parameter, misalnya tingkat kemiskinan di level kecamatan tersebut sementara sampelnyasangat kecil. Salah satu metode yang banyak dikembangkan untuk pendugaan area kecil (small areaestimation / SAE) adalah model yang berbasis pada generalized linear mixed model (GLMM).Beberapa pendekatan lain saat ini mulai didiskusikan oleh para statistisi di dunia. Salah satumetode alternatif tersebut adalah pemodelan yang didasarkan pada kuantil yang dikenal dengan MquantileP-splines. Aspek penting dari metode ini adalah adanya sifat tegar (robust) terhadappencilan (outliers) dan bebas sebaran (distribution free).
Generalized Multilevel Linear Model dengan Pendekatan Bayesian untuk Pemodelan Data Pengeluaran Perkapita Rumah Tangga Azka Ubaidillah; Anang Kurnia; Kusman Sadik
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 9 No 1 (2017): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (704.924 KB) | DOI: 10.34123/jurnalasks.v9i1.91

Abstract

Household per capita expenditure data is one of the important information as an approach to measure the level of prosperity in an area. Such data is needed by the government, both at the central and regional levels in formulating, implementing and evaluating the implementation of development programs. This research is aimed at modeling the household per capita expenditure data which takes into account the specificity of BPS data which has a hierarchical structure, and data distribution pattern which has the right skewed characteristic. The modeling is done by using the three parameters of Log-normal distribution (LN3P) and the three parameters of Log-logistics (LL3P) with a single level (unilevel) and two levels (multilevel) structure. The parameter estimation process is done by Markov Chain Monte Carlo (MCMC) method and Gibbs Sampling algorithm. The results showed that on the unilevel model, the LL3P model is better than the LN3P model. While in multilevel model, LN3P model is better than LL3P model. The results also show that the best model for modeling household per capita expenditure data is the LN3P multilevel model with the smallest Deviance Information Criterion (DIC) value.
PENANGANAN OVERDISPERSI PADA PEMODELAN DATA CACAH DENGAN RESPON NOL BERLEBIH (ZERO-INFLATED) Viarti Eminita; Anang Kurnia; Kusman Sadik
FIBONACCI: Jurnal Pendidikan Matematika dan Matematika Vol 5, No 1 (2019): FIBONACCI: Jurnal Pendidikan Matematika dan Matematika
Publisher : Fakultas Ilmu Pendidikan Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1688.07 KB) | DOI: 10.24853/fbc.5.1.71-80

Abstract

Overdispersi pada data cacah yang disebabkan karena kasus nol berlebih tidak dapat ditangani dengan metode model linier umum biasa seperti Poisson dan Binomial Negatif. Penanganan overdispersi karena nol berlebih dapat dilakukan dengan menggunakan model Zero-Inflated. Zero-Inflated Poisson (ZIP) dan Zero-Inflated Binomial Negatif (ZIBN) telah diyakini performanya dalam menangani masalah ini. Selain menangani masalah tersebut kedua model ini juga dapat memberikan informasi mengenai penyebab nol berlebih pada data respon. Performa ke Empat model tersebut dibandingkan dalam menduga model dari jumlah anak yang tidak sekolah dalam keluarga di Provinsi Jawa Barat pada tahun 2017. Berdasarkan nilai dari ukuran Pearson Chi-Squares, Likelihood Ratio Chi-Square, dan Akaike Information Crieteria (AIC). Pearson Chi-Squares, model ZIP lebih baik dibandingkan ZIBN dan model lainnya, walaupun berbeda sedikit dengan ZIBN.
BISAKAH MEMPEROLEH STATISTIK INDEKS HARGA KONSUMEN TINGKAT PROVINSI DI INDONESIA DENGAN KETELITIAN YANG LEBIH BAIK? Andi Okta Fengki; Khairil Anwar Notodiputro; Kusman Sadik
Seminar Nasional Official Statistics Vol 2019 No 1 (2019): Seminar Nasional Official Statistics 2019
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (660.165 KB) | DOI: 10.34123/semnasoffstat.v2019i1.178

Abstract

Statistik indeks harga konsumen (IHK) atau consumer price index (CPI) juga dibutuhkan pada tingkat provinsi di era desentralisasi saat ini. Ketika IHK ingin diduga pada tingkat provinsi, permasalahan ukuran contoh kecil (small area) muncul karena survei untuk menghasilkan IHK ini di Indonesia dirancang untuk tingkat nasional. Akan tetapi, informasi dari statistik IHK 82 kota dapat membantu untuk menduga IHK provinsi. Metode pendugaan area kecil atau small area estimation (SAE) dapat diterapkan sebagai solusi untuk meningkatkan ketelitian hasil pendugaan langsung. Pada penelitian ini IHK provinsi diduga menggunakan model Fay-Herriot (FH). Hasilnya menunjukan bahwa model FH dapat menghasilkan statistik IHK provinsi dengan ketelitian yang lebih baik dari pendugaan langsung. Hal ini ditunjukan dengan nilai average relative root mean square error (ARRMSE) penduga FH IHK provinsi yang lebih kecil dari penduga langsungnya.
Pengelompokan dan Peramalan Deret Waktu pada Produksi Bawang Merah Tingkat Provinsi di Indonesia Rifqi Aulya Rahman; Farit Mochamad Afendi; Widhiyanti Nugraheni; Kusman Sadik; Akbar Rizki
Seminar Nasional Official Statistics Vol 2021 No 1 (2021): Seminar Nasional Official Statistics 2021
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (697.411 KB) | DOI: 10.34123/semnasoffstat.v2021i1.910

Abstract

Shallots are strategic vegetable commodity state that can affect the national economy. Shallots production increases every year that in line with domestic household consumption. Every province in Indonesia has a different level of shallot production, both in terms of cycles and harvest amount. Clustering provinces with similar production patterns can help government policies. This research aims to determine cluster time series and to evaluate the shallot production forecast in several provinces in Indonesia. There are three of optimal clusters which have a characteristic pattern in time series and their production. Time series at provincial level and cluster level, then it is modelled based on Autoregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA (SARIMA). The evaluation of cluster level is compared to the provincial level and is concluded that clustering makes forecasting efficiently. This is based on average of Mean Absolute Percentage Error (MAPE) that is smaller that provincial level.
Study on the performance of Robust LASSO in determining important variables data with outliers ROCHYATI ROCHYATI; KUSMAN SADIK; BAGUS SARTONO; EVITA PURNANINGRUM
Jurnal Natural Volume 23 Number 1, February 2023
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jn.v23i1.26279

Abstract

A variable selection method is required to deal with regression models with many variables, and LASSO has been the most widely used methodology.  However, as several authors have noted, LASSO is sensitive to outliers in the data.  For this reason, the Robust-LASSO approach was introduced by applying some weighting schemes for each sample in the data.  This research presented a comparative study of the three weighting schemes in Robust LASSO, namely Huber-LASSO, Tukey-LASSO, and Welsch-LASSO.  The study did a rich simulation containing many scenarios with various characteristics on the covariance structures of the explanatory variable, the types of outliers, the number of outliers, the location of active variables, and the number of variables.  The study then found that Tukey-LASSO outperformed Huber-LASSO and Welsch-LASSO in identifying significant variables.  The Robust LASSO performance generally decreased as the covariances among explanatory variables increased and the data dimension increased.  Exploration of sembung leaf extract data shows that the data is high dimensional data which contains outliers of about 14,28% on the response variable and about 25,71% on the explanatory variables.  Based on the research, the number of variables selected using the Tukey-LASSO method was nine compounds, Huber-LASSO and Welsch-LASSO were eight compounds, and LASSO 13 compounds.  The Tukey-LASSO prediction accuracy is superior to the other three methods.
Mengukur Indeks Kebahagiaan Mahasiswa IPB Menggunakan Analisis Faktor Aulya Permatasari; Khairil Anwar Notodiputro; Kusman Sadik
Xplore: Journal of Statistics Vol. 2 No. 1 (2018): 30 Juni 2018
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (259.167 KB) | DOI: 10.29244/xplore.v2i1.69

Abstract

Undergraduate students of Bogor Agricultural University are spread out in 9 Faculties and 1 School. The difference of faculties and schools illustrate the different characteristics and burdens of student lectures on each faculty and school. This distinction raises various assumptions about the level of student happiness in every faculty and school. Student happiness analysis is measured using loading factor obtained from Factor Analysis. Based on the analysis, found that Faculty of Animal Science is the happiest faculty with happiness index reaching 66.88 and the lowest index of happiness found in the Faculty of Human Ecology with happiness index of 62.39.
Perbandingan Metode Dalil Limit Pusat Transformasi dan Resampling Bootstrap dalam Pembentukan Selang Kepercayaan Yuli Eka Putri; Kusman Sadik; Cici Suhaeni
Xplore: Journal of Statistics Vol. 2 No. 2 (2018): 31 Agustus 2018
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/xplore.v2i2.108

Abstract

YULI EKA PUTRI. A Comparative Study of Central Limit Theorem, Transformation and Bootstrap Resampling in Determining Confidence Interval. Supervised by KUSMAN SADIK and CICI SUHAENI. The confidence interval is usually established under normality assumption. But, many real-life data does not belong to normal distribution. Many of them are skewed, such as chi-square distribution, generalized extreme value (GEV) or other distribution. For such data, we can use central limit theorem, transformation and bootstrap resampling method to construct confidence intervals. The performance of the methods in constructing the interval can be evaluated using confidence interval accuracy value, interval width, and standard deviation of the interval width. Thus we can determine the best method. The method is determined for having better performance if it has higher accuracy value, smaller interval width, and smaller standard deviation of interval width.This research use both simulated and real-life data. Simulated data is generated from the chi-square distribution, GEV and modified non-normal distribution. The modified non-normal distributed data is a modification of normal distributed data using quadratic and logaritm transformation. So that the data is no longer normally distributed. The results show that transformation method is well used for small sample sizes. Bootstrap resampling dan central limit theorem are better used for large sample sizes.
Perbandingan Metode Koreksi Pencaran pada Data Hasil Alat Pemantau Kadar Glukosa Darah Non-Invasif Siti Raudlah; Mohammad Masjkur; Kusman Sadik; . Erfiani
Xplore: Journal of Statistics Vol. 7 No. 3 (2018): 31 Desember 2018
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/xplore.v7i3.127

Abstract

Scatter correction is one of the methods in data preprocessing that aim at eliminating the physical properties of the spectrum and reducing the variance between samples. The most commonly methods of scatter correction used are the Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV) methods. The MSC method corrects the spectrum by utilizing the results of simple linear regression parameter estimation. The SNV method performs spectral correction with the median and standard deviation. Another alternative method of scatter correction is the Orthogonal Scatter Correction (OSC) applying the principle of orthogonality. The methods used in this research were MSC, SNV, and OSC methods in order to correct the result data of non-invasive blood glucose measuring instrument. The result of this research showed that the time domain spectrum data and intensity had different amount so that the summarized data was needed. Furthermore, this research found that the OSC method with the five series of statistics gained a good correction result compared to the other methods. The OSC method produced a smaller average value of the variance than the other methods.
Co-Authors . Erfiani . Indahwati A.Tuti Rumiati Aam Alamudi Abdullah, Adib Roisilmi Achmad Fauzan Agus Mohamad Soleh Ahmad Rifai Nasution Aji Hamim Wigena Akbar Rizki Akbar Rizki Akbar Rizki Akmala Firdausi Amalia, Rahmatin Nur Anadra, Rahmi Ananda Shafira Anang Kurnia Andespa, Reyuli Andi Okta Fengki ASEP SAEFUDDIN Astari, Reka Agustia Astari, Reka Agustia Aulya Permatasari Azka Ubaidillah Bagus Sartono Budi Susetyo Cici Suhaeni Cici Suhaeni Dito, Gerry Alfa Dwi Agustin Nuriani Sirodj Efriwati Efriwati Embay Rohaeti Eminita, Viarti EVITA PURNANINGRUM FARDILLA RAHMAWATI Farit Mochamad Afendi Fitrianto, Anwar Haikal, Husnul Aris Hari Wijayanto Hasnataeni, Yunia Hazan Azhari Zainuddin Hermawati, Neni I Gusti Ngurah, Sentana Putra I Made Sumertajaya I Wayan Mangku Indahwati Indahwati Indahwati Intan Arassah, Fradha Iqbal, Teuku Achmad Isnanda, Eriski Khairi A N Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnul Khotimah Kusni Rohani Rumahorbo Latifah, Leli Lili Puspita Rahayu Logananta Puja Kusuma M Soleh, Agus Mochamad Ridwan Mochamad Ridwan, Mochamad Mohammad Masjkur Muh Nur Fiqri Adham Muhammad Yusran Mulianto Raharjo Naima Rakhsyanda Nisrina Az-Zahra, Putri Nur Khamidah NURADILLA, SITI Nusar Hajarisman Pangestika, Dhita Elsha Parwati Sofan, Parwati Purnama Sari Rifqi Aulya Rahman Rizki, Akbar Rizqi, Tasya Anisah ROCHYATI ROCHYATI Sahamony, Nur Fitriyani Saleh, Agus Muhammad Satriyo Wibowo Siregar, Jodi jhouranda Siti Raudlah Sitti Nurhaliza Soleh, Agus M Suhaeni, Cici Supriatin, Febriyani Eka Tendi Ferdian Diputra Titin Suhartini Titin Suhartini, Titin Tri Wahyuni Uswatun Hasanah Utami Dyah Syafitri Viarti Eminita Widhiyanti Nugraheni Yenni Angraini Yenni Kurniawati Yuli Eka Putri