Claim Missing Document
Check
Articles

Found 38 Documents
Search

Mitigating Class Imbalance in DDoS Detection: The Impact of Random Over Sampling on Machine Learning Performance Ghozi, Wildanil; Hussein, Jasim Nadheer; Sani, Ramadhan Rakhmat; Rafrastara, Fauzi Adi; Paramita, Cinantya; Supriyanto, Catur
ELKHA : Jurnal Teknik Elektro Vol. 17 No.2 October 2025
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v17i2.95037

Abstract

Distributed Denial of Service (DDoS) attacks are a major cybersecurity threat, involving malicious traffic generated from numerous compromised sources to overwhelm and disable targeted services. Although machine learning (ML) has shown promise in detecting DDoS attacks through network traffic analysis, a key challenge remains: the class imbalance in datasets such as UNSW-NB15, where normal traffic significantly outweighs attack instances. This imbalance leads to biased predictions and degraded detection performance for minority attack classes. To address this issue, our study investigates the impact of Random Over Sampling (ROS), a simple yet effective balancing technique on improving detection accuracy in multi-class DDoS classification tasks. While prior works have primarily focused on ensemble algorithms or feature selection, our approach is distinct in emphasizing the effect of data balancing on macro evaluation metrics such as macro precision, macro recall, and macro F1-score. ROS was selected over more complex alternatives, such as SMOTE or ADASYN, due to its computational efficiency and ability to establish a performance baseline without introducing synthetic noise. We evaluate four machine learning algorithms: Decision Tree, Naïve Bayes, Random Forest, and XGBoost, using the UNSW-NB15 dataset. The results show that Decision Tree combined with ROS yields the highest improvement in macro F1-score, increasing by 36%. However, this improvement is accompanied by a moderate reduction in accuracy for certain algorithms. These findings highlight the critical role of class balancing in enhancing the reliability of DDoS detection models, especially in imbalanced multi-class scenarios.
Menavigasi Dunia Digital dengan Meningkatkan Literasi Office, TI, dan Internet di Kalangan Siswa-Siswi Pondok Pesantren Raudhatul Qur'an Paramita, Cinantya; Andono, Pulung Nurtantio; Sudibyo, Usman; Rafrastara, Fauzi Adi; Supriyanto, Catur
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 6, No 2 (2023): Mei 2023
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/ja.v6i2.1338

Abstract

Peningkatan popularitas penggunaan perangkat komputer semakin berkembang di berbagai lapisan masyarakat. Pondok pesantren, yang sebelumnya dianggap sebagai tempat yang kurang produktif dan hanya diperuntukkan bagi mereka yang beragama, kini melakukan inovasi untuk meningkatkan peran dan potensi dalam mendukung kemaslahatan lingkungan sekitarnya. Pondok Pesantren Raudhatul Qur’an di Kauman Semarang telah banyak menciptakan siswa yang berhasil menghafal Al-Quran. Setelah menyelesaikan studi di pondok, banyak dari mereka yang melanjutkan pendidikan ke sekolah formal atau menjadi pemuka agama yang memberikan pengajaran dan bimbingan kepada masyarakat dalam memahami agama Islam di lingkungan mereka. Oleh karena itu, pelatihan teknologi komputer diperlukan untuk memberikan pengetahuan dan keterampilan bagi para santri agar dapat dimanfaatkan untuk membantu mengurus keperluan administrasi di pondok pesantren dan berguna bagi masa depan mereka. Sebanyak 53 santri diikutsertakan untuk mengikuti pelatihan yang mencakup pengenalan dasar teknologi informasi [1] seperti hardware, software, penggunaan aplikasi office seperti Word, Excel, dan PowerPoint, serta internet untuk komunikasi dan pengiriman data digital. Berdasarkan hasil pelatihan yang dilaksanakan, para santri memberikan respon positif seperti yang terlihat pada diagram 3 dan 4. Pada diagram 3 menunjukkan bahwa 81,4% dari para santri sangat tertarik dengan pelatihan tersebut, sementara hanya 13,9% yang merasa biasa-biasa saja dan 10,7% yang terpaksa mengikuti. Selain itu, hasil perbandingan pretest dan postest pada diagram 4 menunjukkan peningkatan yang signifikan setelah para santri mengikuti pelatihan tersebut.
Pemanfaatan Algoritma K-Means untuk Membuktikan Implementasi Undang-Undang Pelanggaran Hukum Korupsi di Pengadilan Negeri Banjarmasin Paramita, Cinantya; Rafrastara, Fauzi Adi; Supriyanto, catur
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 2 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i2.5216

Abstract

This research aims to demonstrate the implementation of the Anti-Corruption Law in the Banjarmasin District Court by utilizing the K-Means algorithm. Corruption, which persists in Indonesia over a prolonged period, has reached a critical level, making it crucial to enforce the law fairly and firmly. In this study, the panel of judges in the Banjarmasin District Court was analyzed using the K-Means Clustering method and silhouette coefficient to decide corruption cases that result in state losses. The research findings indicate that the optimal number of clusters is 3, with a value of 0.686. However, there is also a lowest value among the 4 clusters, which is 0.454. These clusters are then divided into three categories of enforcement, namely cases that have been executed (108 cases), cases that will be executed (26 cases), and cases that have not been executed (2 cases). All clusters have a silhouette score of 0.742, indicating successful enforcement. This research provides concrete evidence that the panel of judges in the Banjarmasin District Court has implemented the Anti-Corruption Law while considering state losses. By utilizing the K-Means algorithm, this study also contributes to a better understanding of enforcement practices in the court. It is expected that the results of this research will support efforts to enhance the implementation of the Anti-Corruption Law in Indonesia, particularly in the Banjarmasin District Court
Deteksi Malware menggunakan Metode Stacking berbasis Ensemble Rafrastara, Fauzi Adi; Supriyanto, Catur; Paramita, Cinantya; Astuti, Yani Parti
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 1 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i1.4606

Abstract

Serangan malware kian hari kian memprihatinkan. Evolusi malware yang cepat dan semakin destruktif menimbulkan kekhawatiran bagi banyak pihak. Oleh karena itu, deteksi malware yang efektif sangat dibutuhkan. Data mining memainkan peran yang krusial dalam bidang ini, mengingat algoritma-algoritma yang ada pada data mining bisa dilatih hingga menghasilkan akurasi yang paling tinggi. Untuk mengklasifikasi suatu file, apakah tergolong malware atau tidak, dalam penelitian ini metode stacking digunakan karena dapat meningkatkan akurasi jika dibandingkan dengan algoritma-algoritma klasifikasi konvensional. Empat Algoritma dilibatkan dalam eksperimen yang dilakukan, yaitu: Neural Network, Random Forest, kNN, dan Logistic Regression. Tiga algoritma pertama digunakan sebagai classifier pada level 0, sementara itu Logistic Regression digunakan classifier pada level 1 (meta classifier).  Dengan kombinasi 4 algoritma tersebut, akurasi yang diperoleh adalah sebesar 98.7%, dan akurasi tersebut merupakan yang paling tinggi jika dibandingkan dengan masing-masing algoritma jika dieksekusi secara individual.
Aplikasi Prediksi IHSG Berbasis Web Dengan Integrasi Multi-Algoritma Waluyo, Dwi Eko; Paramita, Cinantya; Kinasih, Hayu Wikan; Pergiwati, Dewi; Rafrastara, Fauzi Adi
Jurnal Informatika: Jurnal Pengembangan IT Vol 9, No 2 (2024)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v9i2.6193

Abstract

The four regression algorithms used in predicting the Composite Stock Price Index (IHSG) have contributed significantly, as the test results show that the Decision Tree algorithm outperforms k-Nearest Neighbor, Linear Regression, and Random Forest, especially in terms of Mean Squared Error (MSE) and R2 score. The stages of data collection, pre-processing, and modeling, followed by model performance measurement, have provided valuable insights into the effectiveness of each algorithm. The success of the Decision Tree in this testing has further propelled its development into a web-based application. This conversion process, following the outlined flowchart, integrates various essential aspects of the model, including user interface and back-end integration, ensuring that the application can be accessed and used efficiently and effectively. Furthermore, the black box testing and User Acceptance Testing (UAT) results, using the Mean Opinion Score (MOS), enhance the validity and reliability of the application. Black box testing involving 2 features with 37 steps demonstrates the system's effectiveness in producing valid outputs, from the initial menu display to the prediction results. Additionally, UAT involving students and entrepreneurs as respondents provides in-depth insights into user acceptance. With a focus on functionality at 97.08%, reliability at 96.09%, and usability at 98.09%, UAT yields high scores in all three aspects, with usability achieving the highest score. These results not only confirm the efficiency of the system in performing its functions but also indicate a high level of user satisfaction, strongly suggesting the potential for widespread adoption of this application in the future.
Pengembangan Sistem Klasifikasi Karakteristik Siswa Berbasis Website dengan menggunakan Algoritma C4.5 Paramita, Cinantya; Rafrastara, Fauzi Adi; Kencana, Lisdi Inu
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 1 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i1.4678

Abstract

Student characteristics are one of the attributes of knowing a student's thinking skills and academic abilities. In the process of teaching and learning, appropriate learning strategies must be applied to students. The Hippocrates-Galenus typology categorizes personality types into four different categories, namely sanguine, choleric, melancholic and phlegmatic. Classification of characteristics that use an approach to students based only on experience or intuition can produce inaccurate results and take a lot of time to process. A system with the ability to predict student characteristics is needed in order to be able to assess students more quickly. In this study, the C4.5 algorithm was implemented into a system that aims to carry out the process of classifying the characteristics of students. From the results of the tests carried out, the C4.5 algorithm obtains an accuracy of 90.08%. This shows it is able to classify student characteristics well by using the C4.5 algorithm
Komparasi dan Implementasi Algoritma Regresi Machine Learning untuk Prediksi Indeks Harga Saham Gabungan Waluyo, Dwi Eko; Kinasih, Hayu Wikan; Paramita, Cinantya; Pergiwati, Dewi; Nohan, Rajendra; Rafrastara, Fauzi Adi
Jurnal Informatika: Jurnal Pengembangan IT Vol 9, No 1 (2024)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v9i1.6105

Abstract

Indeks Harga Saham Gabungan (IHSG) or Indonesia Composite Index (ICI) is part of the macro indicators of a country that describes the economic condition of a country. ICI is an interesting study to research since its existence will be able to show market sentiment regarding an event that occurred in a country. This research tries to predict the ICI in the future based on historical data. The dataset used in this research is publicly available in Yahoo Finance. The experiment is conducted by implementing some regression machine learning algorithms, such as Decision Tree, Random Forest, k-Nearest Neighbor (kNN), and Linear Regression. As a result, Decision Tree has the lowest MSE value compared to other methods: 1268.242. In this research, a website-based application prototype was also developed that can be used to view IHSG graphs and make future predictions, using the 4 (four) tested algorithms.
Performance Improvement of Random Forest Algorithm for Malware Detection on Imbalanced Dataset using Random Under-Sampling Method Rafrastara, Fauzi Adi; Supriyanto, Catur; Paramita, Cinantya; Astuti, Yani Parti; Ahmed, Foez
Jurnal Informatika: Jurnal Pengembangan IT Vol 8, No 2 (2023)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v8i2.5207

Abstract

Handling imbalanced dataset has their own challenge. Inappropriate step during the pre-processing phase with imbalanced data could bring the negative effect on prediction result. The accuracy score seems high, but actually there are many problems on recall and specificity side, considering that the produced predictions will be dominated by the majority class. In the case of malware detection, false negative value is very crucial since it can be fatal. Therefore, prediction errors, especially related to false negative, must be minimized. The first step that can be done to handle imbalanced dataset in this crucial condition is by balancing the data class. One of the popular methods to balance the data, called Random Under-Sampling (RUS). Random Forest is implemented to classify the file, whether it is considered as goodware or malware. Next, 3 evaluation metrics are used to evaluate the model by measuring the classification accuracy, recall and specificity. Lastly, the performance of Random Forest is compared with 3 other methods, namely kNN, Naïve Bayes and Logistic Regression. The result shows that Random Forest achieved the best performance among evaluated methods with the score of 98.1% for accuracy, 98.0% for recall, and 98.2% for specificity.