Claim Missing Document
Check
Articles

Found 40 Documents
Search

Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network Putra, Ivan Pratama; Rusbandi, Rusbandi; Alamsyah, Derry
Algoritme Jurnal Mahasiswa Teknik Informatika Vol 2 No 2 (2022): April 2022 || Algoritme Jurnal Mahasiswa Teknik Informatika
Publisher : Program Studi Teknik Informatika Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2192.855 KB) | DOI: 10.35957/algoritme.v2i2.2360

Abstract

Jagung merupakan tanaman pangan utama ketiga setelah padi dan terigu di dunia dan menempati posisi kedua setelah padi di Indonesia. Penyakit tanaman sering kali disebabkan oleh aktifitas atau serangan organism di dalam bagian tubuh tanaman, di luar tubuh, atau di sekitarnya. Penelitian ini bertujuan untuk mengklasifikasikan penyakit daun jagung menggunakan metode convolutional neural network (CNN) dengan arsitektur Resnet 50 dengan optimizer Adam, Nadam dan SGD. Dataset terdapat 4225 citra di pisahkan menjadi 3380 data train, 845 data test. Citra yang digunakan di resize menjadi ukuran 224x224. Pada penelitian ini mendapatkan hasil tingkat akurasi tertinggi untuk arsitektur Resnet 50 dengan menggunakan optimizer Adam didapatkan tingkat akurasi sebesar 98,4%.
Klasterisasi Topik Skripsi Informatika dengan Metode DBSCAN Khan, Zicola Vladimir VIky; Alamsyah, Derry; Widhiarso, Wijang
Algoritme Jurnal Mahasiswa Teknik Informatika Vol 3 No 1 (2022): Oktober 2022 || Algoritme Jurnal Mahasiswa Teknik Informatika
Publisher : Program Studi Teknik Informatika Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/algoritme.v3i1.3337

Abstract

This research analyzed 176 Palembang public universities’ students’ theses which were published in 2020. The data was analyzed by conducting text processing and extraction with TF-IDF feature by using two scenarios, the reduced feature value and the unreduced one, with SVD method. In each scenario, three metrics, cosine, euclidean, and, manhattan were used, which generated six scenarios in total. The result found that the best quality of cluster which was measured by silhouette coefficient comes from metric cosine and reducted by SVD with the silhouette coefficient value of 0.88382763, intracluster value of 0.08688583, and intercluster value of 0.74671096. Therefore, the cluster quality value of the reducted feature is the best among all metrics. In addition, the use of DBSCAN method showed a positive correlation between epsilon and intracluster with the value of 0.97669, and also showed a negative correlation between epsilon and silhouette with the value of 0.9789.
Pelatihan Desain Grafis Untuk Para Siswi MA Muqimus Sunnah Palembang Pratama, Dicky; Alamsyah, Derry; Gasim, Gasim; Elizabeth, Triana; Yoannita, Yoannita; Tinaliah, Tinaliah
FORDICATE Vol 1 No 1 (2021): November 2021
Publisher : Universitas Multi Data Palembang, Fakultas Ilmu Komputer dan Rekayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.917 KB) | DOI: 10.35957/fordicate.v1i1.1622

Abstract

Community service activity in the form of providing training wereheld on Friday, July 5, 2019 at the MA Muqimus Sunnah School inPalembang. This training aims to conduct graphic design training usingAdobe Photoshop application for 25 students to improve their knowledge inpractice about how to create two dimensional design using Adobe Photoshopapplication such as logo design, poster design, and photo editing. This activityinclude substantial information of the activity, followed by demonstrations inpracticing the application to create designs and testing activities to know howmuch the students can understand the training materials that have beenprovided. At practical session on designing logo and poster, participants weregiven guidance on concepts of how to make good logo such as in choosingcolors, shapes, sizes, and letters or numbers used on logo, The results of thetraining show the students can understand and use tools in Adobe Photoshopapplication to add and organize text, cut and move images, students cancreate logos, posters, and edit images/photos using Adobe Photoshopapplications.
Pelatihan Penggunaan Aplikasi WhatsApp Business Sebagai Media Pemasaran Online pada Toko CCTV Grosir Cabang Palembang Elizabeth, Triana; Alamsyah, Derry; Yoannita, Yoannita
FORDICATE Vol 1 No 2 (2022): April 2022
Publisher : Universitas Multi Data Palembang, Fakultas Ilmu Komputer dan Rekayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (948.352 KB) | DOI: 10.35957/fordicate.v1i2.2409

Abstract

Toko CCTV Grosir Palembang merupakan salah satu toko yang menjual cctv dan menyediakan jasa pemasangan serta perawatan cctv di kota Palembang yang merasakan dampak dari penyakit Covid19. Kekhawatiran akan penyebaran penyakit Covid-19 membuat pemasukan baik dari segi penjualan dan penyediaan jasa pemasangan serta perbaikan cctv menurun. Selain itu, dikarenakan pembatasan oleh pemerintah setempat membuat pelanggan kesulitan jika harus datang langsung ke toko untuk membeli barang. Oleh sebab itu, dibutuhkan sarana baru selain telepon atau datang langsung ke toko sebagai sarana komunikasi dengan pelanggan. Pengabdian ini dilakukan melalui pengadaan pelatihan singkat aplikasi WhatsApp Business beserta fiturfiturnya seperti katalog produk, label, away message, broadcast message, dll. Setelah penggunaan aplikasi WhatsApp Business selama 6 bulan ditemukan peningkatan penjualan berdasarkan produk yang dipromosikan melalui fitur katalog dan broadcast message
Klasifikasi Potensi Anak SD Berdasarkan Hobi Menggunakan Metode Naive Bayes Dengan Teknik Undersampling Karolina, Umi; Wijaya, Novan; Alamsyah, Derry
Jurnal Ilmiah Sistem Informasi Vol. 4 No. 3 (2025): November: Jurnal Ilmiah Sistem Informasi
Publisher : LPPM Universitas Sains dan Teknologi Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/wxnxrm24

Abstract

Setiap anak memiliki potensi yang berbeda-beda, sehingga pentinya pendidikan dan orang tua untuk mengenali potensi anak sejak dini. Penelitian ini bertujuan untuk mengklasifikasi potensi anak sekolah dasar berdasarkan hobi mereka menggunakan metode Naive bayes dan teknik random undersampling dalam mengatasi ketidak seimbangan data. Pengujian dilakukan dengan menggunakan metode Naive bayes pada data yang telah di seimbangkan menghasilkan evaluasi berupa confusion matrix yang menunjukkan akurasi, presisi, recall, dan F1-score. Hasil pengujian menunjukan menggunakan random undersampling dengan pembagian 80:20 mendapatkan akurasi yang lumayan tinggi 90,24%. hasil penelitian menunjukan bahwa penggunaan metode Naive bayes dengan teknik random undersampling mampu mengklasifikasi potensi anak sekolah dasar.
Pengenalan Wajah Untuk Presensi Menggunakan Metode Naive Bayes Sanders, Carmel Edra; Alamsyah, Derry; Devella, Siska
Algoritme Jurnal Mahasiswa Teknik Informatika Vol 6 No 1 (2025): Oktober 2025 || Algoritme Jurnal Mahasiswa Teknik Informatika
Publisher : Program Studi Teknik Informatika Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/algoritme.v5i3.13593

Abstract

Automation of the attendance process has become a necessity nowadays to facilitate the process of recording and recapitulating precise attendance data compared to conservative (manual) attendance. This process is carried out through the recognition of biometric information, namely faces, using the Naive Bayes method with Gaussian distribution and pre-trained VGG16 feature extraction. In this study, the model developed based on this method uses the public CASIA WebFace dataset which has high variation and a private dataset which has low variation. The results show that the proposed method is able to work well on datasets with low variation, with accuracy results reaching 97% supported by feature dimension reduction using the PCA method.
Plagiarism Detection in English Academic Documents using A Lexical-Semantic Hybrid and Support Vector Machine Virginia, Callista; Alamsyah, Derry
INOVTEK Polbeng - Seri Informatika Vol. 11 No. 1 (2026): February
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/2zz12581

Abstract

Detecting plagiarism in academic writing has become increasingly challenging due to advanced text modification strategies that reduce surface-level similarity while preserving the original meaning. This study proposes a hybrid plagiarism detection system that integrates lexical and semantic similarity features to distinguish between plagiarism and altered documents in academic texts. As a key contribution, this study provides a systematic evaluation of a lexical–semantic hybrid plagiarism detection approach using Support Vector Machine (SVM) on English-language academic documents, where all plagiarism cases across different obfuscation levels are consolidated into a single plagiarism class. Lexical similarity is modeled using Term Frequency–Inverse Document Frequency (TF–IDF), while semantic similarity is captured through Sentence-BERT embeddings. These features are combined into a two-dimensional hybrid similarity representation and classified using SVM. The proposed approach is evaluated on the PAN 2025 dataset using stratified 5-fold cross-validation. Experimental results show that the hybrid SVM-based model achieves an average accuracy of 92.5% with the optimal kernel, along with competitive precision, recall, F1-score, and AUC values. Kernel-based evaluation and cross-validation analyses further demonstrate the robustness and generalization capability of the proposed framework, indicating that the hybrid lexical–semantic representation is effective for distinguishing plagiarism and altered content in English academic writing.  
Detection Of Coffee Bean Defects In Speciality Coffee Association Standards Using YOLOv12 Hocwin Hebert; Alamsyah, Derry
INOVTEK Polbeng - Seri Informatika Vol. 11 No. 1 (2026): February
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/47yqwd13

Abstract

Coffee (Coffea spp.) is a high-value plantation commodity with a significant role in the global economy. Coffee consumption, reaching more than two billion cups per day, continues to increase global demand for coffee beans. To ensure quality and consumer acceptance, green coffee bean quality evaluation must follow consistent international standards. However, inspection is still carried out manually, making it time-consuming and subjective. This study proposes coffee bean defect detection based on the Specialty Coffee Association (SCA) standard using YOLOv12. YOLOv12 addresses limitations of previous YOLO versions by integrating R-ELAN to improve training efficiency and reduce gradient loss, as well as Flash Attention to enhance focus on important regions in complex images. A total of 225 images were obtained through augmentation from 45 original samples captured using a smartphone camera under controlled indoor conditions, with each image representing 300 grams of Mandheling coffee beans. The dataset was divided into training (80%), validation (10%), and testing (10%). Eight experimental configurations were evaluated using variations in initial learning rate (0.001 and 0.0005), batch size (8 and 16), and epochs (100 and 150). The optimal configuration of an initial learning rate of 0.0005, a batch size of 16, and 150 epochs achieved a precision of 87%, recall of 85%, and an F1 score of 84%. These results indicate that the effectiveness of YOLOv12 in detecting coffee bean defects depends on proper hyperparameter tuning. The model performs well on visually prominent defects such as cherry pods but shows reduced performance on subtle defects, including floaters, fungus damage, and slight insect damage.
Color and Texture Feature Extraction for Disease Identification in Chili Leaves Using K-Nearest Neighbors Andreyas; Alamsyah, Derry
INOVTEK Polbeng - Seri Informatika Vol. 11 No. 1 (2026): February
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/s9v7mn76

Abstract

Manual identification of chili leaf diseases has the weakness of subjectivity, which impacts the decline in harvest productivity. This study aims to build an accurate automatic classification system using a machine learning approach. The research methodology integrates the extraction of Hue, Saturation, Value (HSV) color features and Gray Level Co-occurrence Matrix (GLCM) texture on a dataset of 1,856 images divided with a ratio of 80:20. Hyperparameter optimization was performed using Grid Search on the K-Nearest Neighbors (K-NN) algorithm to find the best performance. The test results show that the optimal configuration is achieved at a value of K = 3 with the Manhattan distance metric, which produces a test accuracy of 92%. It is concluded that the integration of color and texture features with appropriate parameter optimization is proven to be effective as a reliable and efficient diagnostic solution.
Banana Leaf Disease Identification Using SqueezeNet Architecture with Convolutional Block Attention Module Wijaya, Daniel; Alamsyah, Derry
INOVTEK Polbeng - Seri Informatika Vol. 11 No. 1 (2026): February
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/ktx6vp08

Abstract

Banana leaf diseases significantly reduce crop productivity and quality, while conventional visual inspection methods are often subjective, time-consuming, and inefficient for large-scale plantations. This study proposes an automated banana leaf disease identification approach using a lightweight Convolutional Neural Network (CNN) based on the SqueezeNet architecture integrated with the Convolutional Block Attention Module (CBAM). The dataset consists of four classes—Cordana, Healthy, Pestalotiopsis, and Sigatoka—with image augmentation applied to increase data variability. Several experimental scenarios were conducted to evaluate the impact of data augmentation and CBAM integration on model performance. The models were evaluated using accuracy, precision, recall, and F1-score metrics. Experimental results show that SqueezeNet combined with CBAM achieved superior performance compared to the baseline SqueezeNet model, particularly in non-augmented conditions, with an accuracy of 93.75% while maintaining a relatively small number of parameters. Although data augmentation alone led to performance degradation, the inclusion of CBAM mitigated this effect by enhancing spatial and channel-wise feature representation. These findings indicate that the proposed SqueezeNet–CBAM model offers an effective and computationally efficient solution for banana leaf disease identification, with strong potential for real-world agricultural applications.