Claim Missing Document
Check
Articles

Found 32 Documents
Search

Sistem Identifikasi Pencemaran Air Sungai Berbasis Internet Of Things Eli Widyawati, Reza; Audytra, Hastie; Aristia Sa'ida, Ita
Multidisciplinary Applications of Quantum Information Science (Al-Mantiq) Vol. 4 No. 2 (2024): Multidisciplinary Applications of Quantum Information Science (Al-Mantiq)
Publisher : Al-Mantiq

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/almantiq.v4i2.3239

Abstract

Rivers are open-water ecosystems that are vulnerable to pollution or damage. Pollution that occurs in rivers is usually caused by environmental conditions and human activity that settles around the river. Water ecosystems consist of interrelated biotic and abiotic components; when both components are interrupted, changes in the ecosystem become unbalanced. Water pollution can be caused either intentionally or accidentally, but the main factor in the occurrence of water contamination that is often found is the result of human activity. Technology in this era is evolving very fast. Therefore, there are many prototypes that can support the development of such technologies, such as node-MCU and the Internet of Things (IOT). NodeMCU is a microcontroller equipped with the WiFi module ESP8266. NodeMCU also has a relatively cheaper price.The test results on this system were obtained by conducting a black box test and a validity test on an IOT-based river water pollution identification system using a pH sensor and a turbidity sensor. The results of testing the application of fuzzy sugeno produce a value of 100% from the compatibility of the 3 tests, namely testing on the system, matlab and manual calculations.He suggested that this system could make it easier to know the quality of contaminated or uncontaminated river water.
Application of SMOTE-ENN Method in Data Balancing for Classification of Diabetes Health Indicators with C4.5 Algorithm Bakti Putra Pamungkas; Muhammad Jauhar Vikri; Ita Aristia Sa'ida
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 2 (2025): MEY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i2.2350

Abstract

Data imbalance in health datasets often leads to decreased performance of classification models, especially in detecting minority classes such as diabetics. This study evaluates the effect of the SMOTE-ENN method on improving the performance of the C4.5 algorithm in the classification of diabetes health indicators. The dataset used is the 2021 Diabetes Binary Health Indicators BRFSS from Kaggle, which consists of 236,378 respondent data with unbalanced class distribution: 85.80% non-diabetic and 14.20% diabetic. The SMOTE method was used to add synthetic data to the minority classes, while ENN was applied to remove data considered noise. After balancing, the C4.5 algorithm was used for classification. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results showed that the application of SMOTE-ENN improved accuracy from 79.49% to 80.33% and precision from 29% to 30%. Although the recall value did not increase, this method proved to be able to improve the overall stability of the prediction, especially in terms of the accuracy of the classification of the positive class. The novelty of this research lies in the specific application of the SMOTE-ENN method on large-scale health datasets with the C4.5 algorithm, which has not been widely explored before. Therefore, further exploration of other balancing techniques and algorithms is needed to obtain more optimal classification results on unbalanced data.
Optimizing Gated Recurrent Unit (GRU) for Gold Price Prediction: Hyperparameter Tuning and Model Evaluation on Historical XAU/USD Data Faqih, Abdul; Vikri, Muhammad Jauhar; Sa’ida, Ita Aristia
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 2 (2025): MEY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i2.2352

Abstract

This study investigates the use of a Gated Recurrent Unit (GRU) model with a four-layer architecture for daily gold price closing prediction, motivated by the model's ability to effectively capture temporal dependencies in time series data. Gold price forecasting is highly challenging due to its volatility and external factors, making it an important area of research for investors and financial analysts. By systematically optimizing hyperparameters through 72 combinations of epochs, batch size, GRU layer units, and dropout rates, the study identifies the optimal configuration (100 epochs, batch size of 16, 256 units, dropout rate 0.1) based on MSE performance on validation data. The best model achieved MAE of 25.76, MSE of 954.97, and RMSE of 30.90, after inverse transformation on test data. These results highlight the potential of the GRU model in accurately forecasting gold prices, with implications for financial decision-making . However, the prediction error suggests that further improvements could be made by incorporating external factors or exploring advanced model architectures.
Sistem Kamera Cerdas Pendeteksi Kendaraan Salip Kiri untuk Mengurangi Laka Lantas Berbasis Pembelajaran Mesin agustian, rifan; Dirgantoro, Guruh Putro Dirgantoro; Sa’ida, Ita Aristia Sa’ida
Multidisciplinary Applications of Quantum Information Science (Al-Mantiq) Vol. 5 No. 2 (2025): Multidisciplinary Applications of Quantum Information Science (Al-Mantiq)
Publisher : Al-Mantiq

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/almantiq.v5i2.5256

Abstract

Sistem ini dirancang untuk mendeteksi pelanggaran lalu lintas berupa salip kiri menggunakan kamera dan algoritma YOLOv5. Sistem memanfaatkan ESP32 untuk mengontrol floodlight sebagai peringatan serta mengirim notifikasi otomatis ke Telegram. Pengujian menunjukkan deteksi real-time dapat dilakukan dengan tingkat akurasi tinggi dan respons cepat. Hasil implementasi juga menunjukkan sistem ini efisien, murah, serta mudah diadopsi di wilayah rawan kecelakaan. Studi ini diharapkan dapat menjadi solusi teknologi dalam mendukung keselamatan jalan.
PENGUATAN KAPASITAS USAHA MIKRO MELALUI LITERASI DIGITAL MARKETING DAN KEWIRAUSAHAAN DI DESA NGEPER saida, ita aristia saida; Tawakkal, M. Iqbal
Nawasena Bhakti Vol. 1 No. 1 (2025): NAWASENA BHAKTI: Jurnal Pengabdian Masyarakat
Publisher : Badan Usaha Milik Desa Berkaho Pungpungan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64084/nawasenabhakti.v1i1.1

Abstract

This community service program aims to enhance the capacity of Micro, Small, and Medium Enterprises (MSMEs) in Ngeper Village, Padangan District, Bojonegoro Regency through entrepreneurship and digital marketing literacy training. The program was implemented in several stages: preparation, socialization, training, and evaluation. The two-day training employed a participatory and practical approach, covering topics such as basic entrepreneurship, digital content creation, utilization of social media and marketplaces, and setting up Google Business Profiles. The results show that the training was highly relevant to the participants’ needs, with a satisfaction rate of 92%. The program positively impacted participants' understanding and skills in digital product marketing. As a follow-up, a communication group was formed, and further training and the establishment of a digital MSME community in Ngeper Village are planned.
Pelatihan pembuatan Briket Arang Untuk Meningkatkan Kemandirian Ekonomi Bagi Ibu PKK dan UMKM Desa Karangdayu saida, ita aristia saida
Nawasena Bhakti Vol. 1 No. 2 (2025): NAWASENA BHAKTI : Jurnal Pengabdian Masyarakat
Publisher : Badan Usaha Milik Desa Berkaho Pungpungan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Karangdayu Village has abundant potential in organic waste such as coconut shells, sawdust, and rice husks, but these resources have not been optimally utilized by the local community. The main issues faced include the low level of waste processing skills and limited access to relevant knowledge and training, particularly among PKK women's groups and micro, small, and medium enterprises (MSMEs). The objective of this community service activity is to improve the community’s skills in processing waste into economically valuable products, specifically through charcoal briquette production training. The service methods include stages such as socialization, hands-on training, evaluation during and after the training, and sustainability strategies through the formation of small business groups. The results show that participants developed a good understanding of briquette production techniques and were able to practice the process independently. Moreover, the formation of business groups managed by PKK and MSMEs marks an initial step in creating enterprises based on local potential. In conclusion, this training not only improved the community's technical skills but also opened new opportunities for environmentally friendly and sustainable businesses.
Analisis Sentimen Ulasan Aplikasi DANA di Google Play Store: Penerapan Support Vector Machine dan Synthetic Minority Over-sampling Technique Fajar Nawulansih, Dewi; Ceisa Santi, Nirma; Aristia Sa’ida, Ita
Jurnal Pendidikan dan Teknologi Indonesia Vol 5 No 9 (2025): JPTI - September 2025
Publisher : CV Infinite Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jpti.1053

Abstract

Analisis sentimen ulasan pengguna aplikasi DANA di Google Play Store menggunakan algoritma Support Vector Machine (SVM). Ketidakseimbangan data ditangani dengan Synthetic Minority Over-sampling Technique (SMOTE), dan optimasi parameter dilakukan melalui GridSearchCV. Sebanyak 1.000 ulasan terbaru dianalisis setelah pre-processing dan transformasi TF-IDF. Model SVM dengan kernel linear menghasilkan akurasi tertinggi sebesar 90%, meningkat dari 84% sebelum penerapan SMOTE dan tuning. Uji paired t-test terhadap hasil 10-fold cross-validation menunjukkan peningkatan yang signifikan secara statistik (p-value < 0,05). Recall kelas negatif meningkat dari 63% menjadi 82%, sementara recall positif mencapai 94%. Word cloud menunjukkan kata “dana” paling sering muncul pada ulasan positif dan “aplikasi” pada ulasan negatif. Kombinasi metode ini meningkatkan performa klasifikasi sentimen terhadap ulasan aplikasi DANA secara signifikan.
IMPLEMENTASI ALGORITMA MULTIPLE LINEAR REGRESSION DALAM MENGESTIMASI HASIL PANEN TANAMAN TEMBAKAU wulan, Diah nawang; Barata, Mula Agung; Sa'ida, Ita Aristia
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.3662

Abstract

Penilitian ini bertujuan untuk menaksir panen tembakau petani di Desa Balongrejo menggunakan algoritma regresi linier khusus. Data yang digunakan terdiri dari empat variabel dasar: jumlah bit, jumlah pembelian, jumlah transaksi, dan jumlah jam. Analisis dilakukan secara manual dan dengan bantuan alat statistik. Hasil analisis data menunjukkan bahwa model regresi dapat menjelaskan 95,5% varians dalam data. Selain itu, uji F menunjukkan semua variabel memiliki pengaruh yang signifikan secara bersamaan, sedangkan uji t mengidentifikasi tiga variabel yang memiliki pengaruh signifikan secara terpisah.
REAL-TIME TOMATO QUALITY DETECTION SYSTEM USING YOU ONLY LOOK ONCE (YOLOv7) ALGORITHM: Sistem Deteksi Mutu Tomat Secara Real-time Menggunakan Algoritma You Only Look Once (YOLOv7) Muarofah, Isna Ayu; Vikri, Muhammad Jauhar; Sa'ida, Ita Aristia
ULTIMATICS Vol 15 No 2 (2023): Ultimatics : Jurnal Teknik Informatika
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ti.v15i2.3337

Abstract

Real-time object detection is a crucial aspect of computer vision. With the increasing prominence of the big data field, it has become easier to gather data from various sources. Over the past few decades, computer vision inspection systems have become essential tools in agricultural operations, and their usage has seen a significant rise. Computer vision automation-based technology in agriculture is increasingly being employed to enhance productivity and efficiency. Tomato is a widely utilized crop commodity, finding applications in food, cosmetics, and pharmaceuticals. Consequently, tomato farming continues to evolve and has become one of the nation's export commodities. YOLO is an algorithm capable of real-time object detection and recognition. In this study, the YOLOv7-tiny architecture, which has lower computational overhead, was utilized. For quality detection of tomatoes, they were categorized into three classes: ripe, unripe, and defective. The trained model yielded a recall score of 0.97, precision of 1.0, a PR-curve of 0.838, and an F1-score of 0.81, indicating that the model learned effectively. The research achieved an accuracy of 90.6% on original images with an average IoU of 0.90 and a detection time of 2.7 seconds. In images with added light disturbance, the average accuracy was 91.2%. Images with reduced light yielded an average accuracy of 92%, while images with blur disturbance had an average accuracy of 78.2%. In real-time testing, ripe tomatoes were detected up to a maximum distance of 90cm, unripe tomatoes at 90cm, and defective tomatoes at 70cm.
Pengembangan Model Pembelajaran Citizen Journalism untuk Meningkatkan Civic Skills dan Civic Empathy pada Mahasiswa: Citizen Journalism Sa'ida, Ita Aristia; Dirgantoro, Guruh Putro
Journal of Education Research Vol. 5 No. 3 (2024)
Publisher : Perkumpulan Pengelola Jurnal PAUD Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37985/jer.v5i3.1269

Abstract

Pengembangan warga negara yang demokratis sesuai dengan karakteristik warga negara abad ke dua puluh satu yang menekankan pada dimensi pendidikan, sosial, politik, sosial budaya, dan ekonomi sehingga diperlukan materi dan metode pembelajaran yang tepat. Disamping itu digitalisasi juga berpengaruh pada karakter generasi muda yang mudah terbawa arus instan informasi. Berawal dari kondisi seperti ini, perlu adanya  Penelitian tentang pengembangan model pembelajaran Citizen Journalism untuk meningkatkan civic skills dan civic empathy pada mahasisiwa, dimana penelitian tersebut bertujuan untuk melakukan investigasi dampak pada penggunaan model pembelajaran citizen journalism kepada mahasiswa untuk mengembangkan civic skills dan civic empathy sebagai upaya penguatan Pendidikan karakter bagi para mahasiswa. Penelitian ini dilaksanakan menggunakan pendekatan kualitatif dengan jenis penelitian Tindakan kelas menggunakan model dari bachman. Informan dalam penelitian ini yaitu mahasiswa Teknik informatika Universitas Nahdlatul Ulama Sunan Giri semester dua yang sedang menempuh mata kuliah Pendidikan kewarganegaraan. Hasil penelitian menunjukkan bahwa para mahasiswa telah memiliki perangkat keteram- pilan dan empati sebagai bagian dari civic competencies yang membentuk karakter dan moralitas publik mereka. Melalui model pembelajaran citizen journalism, kedua kompetensi tersebut diperkuat dan tampak lebih jelas dengan pola pembelajaran berbuat dan penyelesaian masalah melalui penyelesaian proyek. Selain itu, hasil analisis menunjukkan bahwa model citizen journalism mampu mengembangkan sikap-sikap demokratis mahasiswa seperti keterbukaan, berpikir kritis, toleran, dan bertanggung jawab.