p-Index From 2021 - 2026
7.018
P-Index
This Author published in this journals
All Journal ComEngApp : Computer Engineering and Applications Journal Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA JIEET (Journal of Information Engineering and Educational Technology) Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Sebatik Jurnal Teknoinfo ICETIA Jurnal Nasional Komputasi dan Teknologi Informasi IJISTECH (International Journal Of Information System & Technology) JURIKOM (Jurnal Riset Komputer) Informatika : Jurnal Informatika, Manajemen dan Komputer Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi Jurnal Informatika Ekonomi Bisnis Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika IJISTECH Information System Journal (INFOS) Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer JUSTIN (Jurnal Sistem dan Teknologi Informasi) Bulletin of Information Technology (BIT) Knowbase : International Journal of Knowledge in Database Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Sains dan Informatika : Research of Science and Informatic Jurnal Informatika Ekonomi Bisnis
Claim Missing Document
Check
Articles

Data Warehouse Design For Sales Transactions on CV. Sumber Tirta Anugerah Syaputra, Muhammad Dwiky; Nazir, Alwis; Gusti, Siska Kurnia; Sanjaya, Suwanto; Syafria, Fadhilah
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 8, No 2 (2022): December 2022
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.133 KB) | DOI: 10.24014/coreit.v8i2.19800

Abstract

Many data warehouses are implemented in companies engaged in retail, CV. Sumber Tirta Anugerah is one of the paint product retail companies that has not implemented it yet. As time goes by, the sales transaction data is getting more and more difficult to process because it is still stored in Microsoft Excel. This is a serious problem in utilizing historical data to assist in making a decision. It is difficult to store sales data because the data is quite large and a lot. Based on the above problems, a data warehouse design is needed for sales transaction data. This data warehouse design uses Kimball's nine-steps method and star schema. To perform the ETL process (extract, transform, and load) using Pentaho software. In this data warehouse design, Tableau software is used to visualize the processed data into a graph and dashboard report. The result of this research is a data warehouse design using nine steps and a star schema which gets a transformation response time of 4048 MS. 
KLASIFIKASI DAGING SAPI DAN DAGING BABI MENGGUNAKAN ARSITEKTUR EFFICIENTNET-B3 DAN AUGMENTASI DATA Maulana Junihardi; Jasril jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
Jurnal Tekinkom (Teknik Informasi dan Komputer) Vol 6 No 1 (2023)
Publisher : Politeknik Bisnis Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37600/tekinkom.v6i1.845

Abstract

The increasing demand for beef has made its price soar. the traders then mix beef with pork to get more profit. There is a technology in the field of informatics that can be used to differentiate beef, pork and mixed meat. This research was conducted to find out the difference between beef, pork and mixed meat. In this study, a deep learning convolutional neural network with the EfficientNet-B3 architecture is used for image identification to distinguish between beef and pork. 9000 images have been divided into three categories: mixed meat, pork and beef. This study compares the classification results using original data and data augmentation. The data augmentation models used are brightness, rotation, and horizontal and vertical inversion. Data is split 80:20 and 90:10 for training and testing respectively. The best results are achieved by using a division ratio of 90:10 on image data with augmentation which has a learning rate of 0.01 and Adamax Optimizer which has accuracy, precision and recall levels of 98.66%, 98.67% and 98.66%.
Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data Ikhwanul Akhmad DLY; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Febi Yanto
Journal of Information System Research (JOSH) Vol 4 No 4 (2023): Juli 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v4i4.3702

Abstract

Konsumsi daging di Indonesia didominasi oleh sapi, kerbau, dan ayam. Namun, beberapa pedagang nakal mencampur daging sapi dengan daging babi sehingga sulit dibedakan oleh masyarakat awam. Beberapa penelitian telah menggunakan metode Convolutional Neural Network (CNN) untuk mengklasifikasikan citra, namun kekurangan data menjadi tantangan. Oleh karena itu, penelitian ini menerapkan teknik augmentasi data pada model CNN Alexnet untuk mengklasifikasikan daging sapi, babi, dan daging oplosan. Penelitian ini menggunakan dua rasio pembagian data yang berbeda, yaitu 90:10 dan 80:20, dengan total 600 data non-augmentasi dan 3000 data augmentasi yang dibagi menjadi tiga kelas. Beberapa hyperparameter diuji untuk mengoptimalkan kinerja model seperti optimizer Adaptive Moment Estimation (Adam), Stochastic Gradient Descent (SGD) dan Propagasi Root Mean Square (RMSprop) serta learning rate 0.1, 0.01, 0.001 dan 0.0001. Hasil menunjukkan bahwa penggunaan data citra augmentasi dengan optimizer Adam dan learning rate 0,001 memberikan accuracy tertinggi sebesar 85,00%. Sementara itu, penggunaan data citra non-augmentasi dengan skenario optimizer RMSprop dan learning rate 0, 0001 menghasilkan performa yang sedikit lebih rendah, yaitu mendapatkan accuracy 80.00%. Keduanya menggunakan perbandingan data 80:20. Teknik augmentasi data berhasil meningkatkan kinerja model deep learning dengan menciptakan data baru dari data yang ada.
Clustering Vaksinasi Penyakit Mulut dan Kuku Menggunakan Algoritma Fuzzy C-Means Yusril Hidayat; Alwis Nazir; Reski Mei Candra; Suwanto Sanjaya; Fadhilah Syafria
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3416

Abstract

Foot and Mouth Disease is a disease that attacks cloven hooves, this disease spreads very quickly and the mortality rate of infected animals is up to 100%. FMD is caused by type A picornaviridae virus, namely Apthaee epizootecae, which has a development period of 1-14 days after the animal is infected. The delay in handling it can cause many livestock to die and have an impact on cattle farmers. One of the steps taken to prevent the spread of this disease is to eradicate all livestock. The Riau Provincial Government has taken steps to prevent vaccination of all livestock in Riau Province in the form of preventing this disease from becoming more widespread. From these problems, this research will form a data cluster for the PMK program in Riau Province so that the government can improve supervision of livestock to prevent re-outbreaks of foot and mouth disease in Riau Province. The method used is data mining with the Fuzzy C-means algorithm and the data used comes from the Department of Animal Husbandry and Animal Health in Riau Province. The best cluster results after testing is 2 clusters. The most numerous clusters are in cluster 1 with a total of 48704 cows and cluster 2 with a total of 21232. The validity test using the DBI gets a value of 0.416, so it is still far from good
Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi Sarah Lasniari; Jasril Jasril; Suwanto Sanjaya; Febi Yanto; Muhammad Affandes
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 5, No 3 (2022): Juni 2022
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v5i3.4424

Abstract

Abstrak - Kasus kecurangan pedagang mencampur daging sapi dengan daging babi masih terjadi hingga saat ini. Membedakan daging sapi dan babi dapat dilakukan dengan mengamati secara langsung satu persatu, tetapi hal ini dapat dilakukan oleh para ahli, Tetapi secara kasat mata masih sulit membedakannya. Perilaku pedagang seperti ini sangat merugikan konsumen khususnya pemeluk agama Islam karena berkaitan dengan makanan yang halal atau haram. Pada penelitain ini menggunakan metode Deep Learning untuk klasifikasi citra dengan Convolutional Neural Network (CNN) arsitektur ResNet-50. Jumlah data sebanyak 457 citra yang terbagi menjadi 3 kelas, yaitu daging babi, daging oplosan dan daging sapi. Setiap kelas memiliki ukuran gambar yang sama yaitu 300 x 300 pixel. Pembagian data menggunakan split data dengan perbandingan 70% data uji : 30% data uji, 80% data latih : 20% data uji, dan 90% data latih : 10% data uji. Hasil dari pengujian model dengan Confusion Matrix menunjukkan performa klasifikasi tertinggi dengan 100% accuracy, 100% precision, dan 100% recall, pada data citra asli dengan penggunaan batch size 32, 0.001 learning rate, epoch 75 dan split data 90% : 10%.Kata kunci: Convolutional Neural Network, Daging Babi dan Sapi, Deep Learning, Klasifikasi Citra, ResNet  Abstract - Traders mixing beef and pork are still committing fraud today. Although professionals can discern between beef and pork by watching them one by one, it is still impossible to do so with the naked eye. This kind of behavior is very detrimental to consumers, especially Muslims because it is related to halal or haram food. This research uses Deep Learning method to classify images with Convolutional Neural Network (CNN) ResNet-50 architecture. The number of data is 457 images which are divided into 3 classes, namely pork, mixed meat and beef. Each class has the same image size, which is 300 x 300 pixels. data distribution using split data with a comparison of 70% training data: 30% test data, 80% training data: 20% test data, and 90% training data: 10% test data. The results of model testing using the Confusion Matrix show the highest classification performance with 100% accuracy, 100% precision, and 100% recall, on the original image data using batch size 32, 0.001 learning rate, epoch 75 and split data 90%: 10%..Kata kunci: Convolutional Neural Networ, Deep Learning, Image Classification, Pork and Beef, ResNet
Klasifikasi American Sign Language Menggunakan Convolutional Neural Network Israldi, Tino; Haerani, Elin; Sanjaya, Suwanto; Syafria, Fadhilah
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2570

Abstract

Communicating is a necessity for all groups or individual because each individual should communicate with their surroundings. Communicating can also make us get information so that it can be used as a reference to be able to adapt. Verbal language used by speaking out loud is a way of communicating with individuals, but not all individuals can communicate with it, especially there are some individuals who have hearing limitations. Because of these limitations, another program that can be used is through sign language. Language requirements are languages that are usually used by people with disabilities in terms of hearing or speaking and sign language also has a fairly well-known sign language standard, namely the American Sign Language (ASL) standard. Unlike languages in the world, sign language is also often of little interest to most people because people's interest in sign language is still lacking so that most people are unable to understand their language. Sign language has many types, one of which is sign language by using hands to form letters and numbers. In overcoming these problems, the solution is to create a system that can be used to recognize sign language, the system developed is a system that used machine learning technology. This study will propose an ASL classification approach through data preprocessing and a convolutional neural network model. The proposed model can classify ASL hand posture images to be translated into the alphabet. The result of this study is an model with accuracy of 99.8% obtained from the process of merging preprocessing data and the convolutional neural network model.
Penerapan Deep Learning Menggunakan Gated Recurrent Unit Untuk Memprediksi Harga Minyak Mentah Dunia Saputra, Nugroho Wahyu; Insani, Fitri; Agustian, Surya; Sanjaya, Suwanto
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3552

Abstract

Crude oil is a much-needed energy for the whole world. Each country is inseparable from the use of crude oil for use in various sectors, such as transportation, so that the price of world crude oil is the most important variable for the world. Fluctuations in oil prices will cause various problems, such as inflation, changes in market prices, and others. Therefore, the prediction of world crude oil prices is very important as a consideration for decision making. This study implements deep learning using the Gated Recurrent unit model. The data used is the price of Brent crude oil with a total of 5834 data, starting from January 4, 2000 to December 19, 2022. The parameters used are the number of GRU units, batch size, and lookback. The best model produced in this study is the GRU model with hyperparameters consisting of 30 lookbacks, 50 GRU units, and 256 batch sizes with the lowest MAPE value among the other models, which is 2.25%. The MAPE value states that predictions using the GRU model are said to be very good at predicting world crude oil prices
Performance Analysis of LVQ 1 Using Feature Selection Gain Ratio for Sex Classification in Forensic Anthropology Harni, Yulia; Afrianty, Iis; Sanjaya, Suwanto; Abdillah, Rahmad; Yanto, Febi; Syafria, Fadhilah
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3625

Abstract

One approach to handling large of data dimensions is feature selection. Effective feature selection techniques produce the essential features and can improve classification algorithms. The accuracy performance results can measure the accuracy of the method used in the classification process. This research uses the Learning Vector Quantization (LVQ) 1 method combined with Gain Ratio feature selection. The data used is male and female skull bone measurement data totaling 2524. The highest accuracy results are obtained by LVQ 1, which uses a Gain Ratio with a threshold of 0.01 with a learning rate = 0.1, which is 92.01%, and the default threshold weka(-1.7976931348623157E308) with a learning rate = 0.1, which is 92.19%. In comparison, previous research that did not use gain ratio or that did not use GR only had the best results of 91.39% with a learning rate = 0.1, 0.4, 0.7, 0.9. This shows that LVQ 1 using the Gain Ratio can be recommended to improve the performance of the Skull dataset compared to LVQ 1 without Gain Ratio.
RANCANG BANGUN APLIKASI SIMULASI MINING PADA JARINGAN BLOCKCHAIN BITCOIN Sugandi, Hatami Karsa; Harahap, Nazruddin Safaat; Cynthia, Eka Pandu; Yanto, Febi; Sanjaya, Suwanto
Sebatik Vol. 26 No. 1 (2022): Juni 2022
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46984/sebatik.v26i1.1875

Abstract

Bitcoin merupakan salah satu dari mata uang digital yang dalam regulasinya tidak diatur oleh siapa pun seperti lembaga, organisasi maupun pemerintahan. Bitcoin menggunakan teknologi kriptografi atau yang biasa dikenal dengan teknologi Blockchain. Teknologi ini merupakan teknologi penyimpanan data atau transaksi kedalam sebuah block, dimana setiap proses penambahan block baru harus melalui proses validasi oleh sistem sesuai dengan konsensus yang berlaku. Untuk mengamankan jaringan Blockchain miliknya, bitcoin menggunakan algoritma konsensus Proof of Work (PoW). Proses validasi block inilah yang dinamakan dengan proses mining. Mining dilakukan untuk menambahkan transaksi kedalam Block dengan cara memecahkan teka-teki matematika dari algoritma PoW dengan cara memberikan komputasi power dari GPU oleh miner. Dikarenakan membutuhkan power yang besar, para miner diberi imbalan berupa bitcoin. Besaran bitcoin yang diterima tergantung dari hash power miner. Fenomena mining bitcoin menjadi trend bisnis pada masa kini karena menjanjikan keuntungan. Fenomena ini membuat banyak orang awam untuk ikut melakukan mining, tanpa mengetahui apa yang sebenarnya akan dilakukan. Maka dari itu simulasi ini dibuat dengan tujuan untuk mengedukasi bagaimana proses yang terjadi pada mining Bitcoin dengan cara visualisasi melalui Aplikasi web yang nantinya akan dibangun menggunakan bahasa pemrograman javascript dan diharapkan dapat menggambarkan proses mining pada blockchain dengan menerapkan algoritma konsensus Proof of Work di dalamnya.
The Turbofan Engine Remaining Useful Life Prediction Using 1-Dimentional Convolutional Neural Network Fauzan, Ahmad; Handayani, Lestari; Insani, Fitri; Jasril, Jasril; Sanjaya, Suwanto
Computer Engineering and Applications Journal Vol 13 No 03 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i03.484

Abstract

Turbofan engines have been the dominant type of engine in aircraft for the last forty years. Ensuring the quality of these engines is crucial for flight safety, particularly for long-distance flights. However, their performance degrades over time, impacting flight safety. To address this issue, it is essential to predict potential engine failures by estimating the Remaining Useful Life (RUL) of the engines Deep learning, especially Convolutional Neural Networks (CNNs), has demonstrated exceptional proficiency in handling intricate, non-linear data, leading to improved RUL predictionsdue to their ability to process complex and non-linear data. In this project, a 1-D CNN is used to predict RUL using the NASA C-MAPSS FD001 dataset, which consists of 3 settings and 21 sensors, though sensors with stagnant readings are excluded. The dataset is normalized using min-max and z-score methods, and then segmented into sequences for input into the 1-D CNN model. Various training scenarios were evaluated, with the best RMSE of 3.26 achieved using 10 epochs, a learning rate of 0.0001, and z-score normalization. The results indicate that feature selection can produce a lower RMSE compared to scenarios without feature selection.
Co-Authors Abdussalam Al Masykur Adrian Maulana Afiana Nabilla Zulfa Ahmad Fauzan Ahmad Paisal Ahmad, Rizmah Zakiah Nur Al Fiqri, M. Faiz Alwis Nazir Alwis Nazir Alwis Nazir Alwiz Nazir Amalia Hanifah Artya Annisa Putri Aqilah, M Alfandri Arif Mudi Priyatno Ariq At-Thariq Putra Aulia Ramadhani Cut Lira Kabaatun Nisa Darmila Deny Ardianto Dodi Efendi efni humairah Eka Pandu Cynthia, Eka Pandu Elin Haerani Elvia Budianita Erni Rouza, Erni Ersad Alfarsy Absar, Ersad Alfarsy Fadhilah Syafria Fadhilla Syafria Fakhrezi, Muhammad Dzaki Febi Yanto Felian Nabila Fitri Insani Fitri Insani Fitri Insani (Scopus ID: 57190404820) Fitri, Dina Deswara Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Hafez Almirza Harni, Yulia Hartini Hartini Iis Afrianty iis afrianty Iis Afrianty Iis Afrianty Ikhwanul Akhmad DLY Irman Hermadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Jasril Jasril Karina Julita Kurnia Rahman, Fikri Kurniawan, Saifur Yusuf Lestari Handayani Lestari Handayani Lestari Handayani Lia Anggraini Lola Oktavia M. Fadil Martias Masaugi, Fathan Fanrita Maulana Junihardi Mazdavilaya, T Kaisyarendika Megawati Megawati Morina Lisa Pura Muhammad Affandes Muhammad Fikry Muhammad Irfan Syah Muhammad Irsyad Muhammad Irsyad Nabyl Alfahrez Ramadhan Amril Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Negara, Benny Sukma Novi Yanti Novriyanto Novriyanto Novriyanto Pangestu, Yoga Pizaini Pizaini Puspa Melani Almahmuda Putri Ayuni, Desy Radili, Adi Rahma Shinta Rahmad Abdillah Rahmad Abdillah Ramu Will Sandra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Saputra, Nugroho Wahyu Sarah Lasniari Sarah Lasniari Shahira, Fayza siska kurnia gusti Siska Kurnia Gusti Siska Kurnia Gusti Sugandi, Hatami Karsa SURYA ADITYA GD Surya Agustian Syaputra, Muhammad Dwiky Ulfah Adzkia Vitriani, Yelfi Yani, Susmi Syahfrida Yelfi Vitriani Yeni Fariati Yusra Yusra, Yusra Yusril Hidayat