p-Index From 2021 - 2026
7.296
P-Index
This Author published in this journals
All Journal ComEngApp : Computer Engineering and Applications Journal Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA JIEET (Journal of Information Engineering and Educational Technology) Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Sebatik Jurnal Teknoinfo ICETIA Jurnal Nasional Komputasi dan Teknologi Informasi IJISTECH (International Journal Of Information System & Technology) JURIKOM (Jurnal Riset Komputer) Informatika : Jurnal Informatika, Manajemen dan Komputer Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi Jurnal Informatika Ekonomi Bisnis Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika IJISTECH Information System Journal (INFOS) Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer JUSTIN (Jurnal Sistem dan Teknologi Informasi) Bulletin of Information Technology (BIT) Knowbase : International Journal of Knowledge in Database Malcom: Indonesian Journal of Machine Learning and Computer Science Jurnal Sains dan Informatika : Research of Science and Informatic Jurnal Informatika Ekonomi Bisnis
Claim Missing Document
Check
Articles

Klasifikasi Citra Daging Sapi dan Babi Menggunakan Convolutional Neural Network (CNN) dengan Arsitektur EfficientNet-B2 dan Augmentasi Data Deny Ardianto; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.30587

Abstract

Permintaan daging sapi Indonesia meningkat secara signifikan setiap tahun. Meningkatnya kebutuhan daging sapi ini sering dimanfaatkan oleh pedagang untuk mendapatkan untung lebih dengan cara mencampurkan daging sapi dan babi (oplosan). Membedakan daging sapi, babi, dan oplosan secara manual menggunakan penciuman dan penglihatan manusia sangatlah sulit. Untuk membantu membedakan daging tersebut dapat menggunakan teknologi yaitu pengolahan citra. Penelitian ini menggunakan Convolutional Neural Network (CNN) berarsitektur EfficientNet-B2 untuk pengolahan citra dan klasifikasi. Pada penelitian ini juga dilakukan proses augmentasi data citra untuk memperbanyak citra dengan tujuan meningkatkan akurasi. Jumlah citra asli daging sebanyak 900 telah mengalami peningkatan setelah dilakukan proses augmentasi, menjadi 9000 citra yang mencakup daging sapi, babi, dan oplosan. Dataset dibagi menjadi dua bagian, yaitu dataset pelatihan dan testing, dengan rasio perbandingan 80:20 dan 90:10. Dengan menggunakan dataset citra augmentasi dengan kombinasi optimizer Adamax, activation Swish, dan learning rate 0.1, penelitian ini menghasilkan akurasi klasifikasi tertinggi, yaitu 98,22% accuracy, 98,25% precision, 98,22% recall, 98,22% f1-score, dengan rasio perbandingan data 90:10.
Klasifikasi Penyakit Stroke Jaringan Syaraf Tiruan Menerapkan Metode Learning Vector Quantization Puspa Melani Almahmuda; Iis Afrianty; Suwanto Sanjaya; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.31359

Abstract

Penyakit Stroke ialah salah satu penyebab kematian paling umum dan sering terjadi didunia termasuk Asia setelah penyakit jantung koroner dan kanker. Pemecahan masalah dengan melakukan klasifikasi penyakit stroke menggunakan metode Learning Vector Quantization (LVQ) dengan mengklasifikasikan data stroke dan tidak stroke (normal) berdasarkan gejala penyakit. Adapun dataset diperoleh dari situs Kaggle berjumlah 4981 data yang memiliki 10 variabel diantaranya jenis kelamin, usia, status pernikahan, hipertensi, penyakit jantung, tipe kerja, tipe tempat tinggal, tingkat avg glukosa, BMI (indeks massa tubuh), dan smoking status. Data tersebut dilakukan klasifikasi LVQ dengan membagi data yaitu 90:10, 80:20, 70:30 dan 60:40 dan parameter learning rate = 0,01 dan 0,001 serta epoch 1000. Dari proses klasifikasi tersebut maka didapatkan hasil akurasi tertinggi 70% dengan presisi 0,72 recall 0,70 dan f1 score 0,69, diperoleh dengan membagi data 90% : 10%. Berdasarkan hasil tersebut, metode LVQ pada penelitian ini mampu melakukan klasifikasi penyakit stroke dengan cukup  baik.
Klasifikasi Daging Sapi dan Daging Babi Menggunakan CNN dengan Arsitektur EfficientNet-B4 dan Augmentasi Data Ahmad Paisal; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.30586

Abstract

Meningkatnya kebutuhan daging sapi, membuat harga daging sapi melonjak. Banyak pedagang melakukan kecurangan dengan melakukan oplos daging sapi dengan daging babi agar mendapatkan keuntungan yang lebih. Salah satu teknologi dalam bidang informatika dapat dimanfaatkan untuk membantu membedakan daging sapi, daging babi, dan daging oplosan. Dengan cara klasifikasi hal ini dapat dilakukan, penelitian ini menggunakan Convolutional Neural Network dengan arsitektur EfficietnNet-B4. Proses augmentasi data juga dilakukan pada penelitian ini untuk memperbanyak data citra, setelah di-augmentasi total citra menjadi 9000 dari 3 kelas. Pembagian dataset pada penelitian ini dibagi menjadi 2 yaitu 80% data latih dan 20% data uji serta 90% dan 10%. Proses pengujian dilakukan dengan memfokuskan model yang mendapatkan validation accuracy diatas 75% pada proses pelatihan. Hasil percobaan pada dataset 80:20 citra dengan augmentasi lebih unggul pada setiap model dibanding dengan citra asli. Sedangkan pada dataset 90:10 hasil percobaan dengan citra asli rata – rata lebih unggul dibanding citra dengan augmentasi.
Implementasi Algoritma C4.5 dalam Melakukan Klasifikasi Penyakit Stroke Otak Felian Nabila; Iis Afrianty; Suwanto Sanjaya; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.31361

Abstract

Stroke merupakan gangguan kesehatan dalam jangka panjang dan menjadi salah satu penyakit dengan resiko kematian paling tinggi. Penanganan stroke dengan cepat menyebabkan tingkat kemunculan komplikasi dan kerusakan yang terjadi pada otak berkurang. Oleh karena itu perlunya melakukan analisa diri pada orang yang bersangkutan  apakah orang tersebut mengalami penyakit stroke atau tidak. Penelitian ini melakukan klasifikasi algoritma C4.5 penyakit brain stroke guna menganalisa data terkait penyebab stroke dengan model decision tree dan membagi dataset menjadi 3 yakni train set, validation set, test set dengan perbandingan 70:20:10, kemudian didapatkanlah hasil dengan akurasi yang tinggi sebesar 95% disetiap data train set, validation set, test set. Serta presisi sebesar 0,91, recall sebesar 0,54, f1-score sebesar 0,56 untuk data train set, kemudian presisi sebesar 0,48, recall sebesar 0,50, f1-score sebesar 0,49 untuk validation set, dan presisi sebesar 0,48, recall sebesar 0,50, f1-score sebesar 0,49 untuk test set. Dapat Disimpulkan bahwa algoritma C4.5 decision tree ini dapat melakukan klasifikasi penyakit stroke dengan sangat baik.
Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan CNN Arsitektur EfficientNet-B6 dan Augmentasi Data M. Fadil Martias; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Febi Yanto
Jurnal Sistem Komputer dan Informatika (JSON) Vol 4, No 4 (2023): Juni 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v4i4.6195

Abstract

In daily life, beef often serves as a staple food for humans. However, the high and expensive price of beef has prompted traders to adulterate it with pork for the sake of profit. Such adulteration has serious implications in the Islamic religion, where not all types of meat are considered halal (permissible for consumption), such as pork. As a result, consumers often remain unaware that the beef they purchase has been adulterated with pork. At a glance, both types of meat exhibit similar appearance and texture, making them difficult to differentiate. This research aims to classify beef and pork using a deep learning model with the Convolutional Neural Network (CNN) method, combined with data augmentation. The model used is EfficientNet-B6 with variations in the testing scenario. The variations include the ratio of training and testing data, learning rates, and optimizer for EfficientNet-B6. Data augmentation is performed using techniques such as random rotation, shifting, image scaling, vertical and horizontal flipping, and nearest pixel filling. Evaluation results using the confusion matrix show that the model with data augmentation achieves the highest accuracy for the classes of beef, pork, and adulterated samples at 92.00%, while the model without augmentation achieves an accuracy of 91.67%. However, from this experiment, the best scenario to avoid misclassifying pork and adulterated samples as beef can be obtained. This scenario involves a model with data augmentation, a 90:10 data split, SGD optimizer, and a learning rate of 0.01, which achieves the highest precision for the beef class at 96.05%. The research findings demonstrate that the use of data augmentation on images can improve the model's performance, and the model with data augmentation, a 90:10 data split, SGD optimizer, and a learning rate of 0.01 exhibits the best performance in classifying beef images.
PERAMALAN PENJUALAN GAS OKSIGEN MENGGUNAKAN ALGORITMA DOUBLE EXPONENTIAL SMOOTHING Cut Lira Kabaatun Nisa; Alwis Nazir; Siska Kurnia Gusti; Lestari Handayani; Suwanto Sanjaya
I N F O R M A T I K A Vol 15, No 1 (2023): MEI, 2023
Publisher : STMIK DUMAI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36723/juri.v15i1.521

Abstract

Perusahaan yang baik perlu melakukan pengembangan terhadap usaha yang dimiliki demi kepuasan relasi, salah satu usaha perusahaan dalam melakukan pengembangan dalam bisnis adalah melakukan peramalan, peramalan penjualan bertujuan dalam menentukan keputusan untuk masa yang akan datang. Produk gas oksigen merupakan salah satu jenis produk gas yang diproduksi dan di distribusikan dalam bentuk tabung, lonjakan kebutuhan gas oksigen pada masa pandemic covid-19 mengakibatkan angka kebutuhan gas oksigen meningkat sehingga kebutuhan akan produk tersebut tidak dapat terkendali dan mengakibatkan permintaan yang tidak dapat terpenuhi. Peramalan ini bertujuan untuk membantu perusahaan menentukan strategi dalam meramalkan kebutuhan stok oksigen lima bulan mendatang yaitu Januari 2023 sampai Mei 2023 menggunakan teknik peramalan yang dapat menganalisa perhitungan dengan pendekatan kuantitatif, metode peramalan yang digunakan adalah Double Exponential Smoothing Holt dengan menggunakan perhitungan nilai MAPE  (Mean Percentage Error) untuk menghitung kesalahan peramalan, data yang diteliti merupakan data bulan Januari 2019 hingga Desember 2022 menggunakan alpha = 0,9 dan beta = 0,1 menghasilkan nilai error 2,516% untuk  peramalan penjualan lima bulan mendatang.
Aplikasi Android untuk Alih Aksara Latin ke Arab Melayu dengan Pendekatan Berbasis Aturan Yusra, Yusra; Fikry, Muhammad; Yani, Susmi Syahfrida; Irsyad, Muhammad; Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 6, No 2 (2020): Desember 2020
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (478.821 KB) | DOI: 10.24014/coreit.v6i2.11645

Abstract

Bahasa Indonesia didasarkan dari bahasa Melayu yang dapat dituliskan dengan menggunakan aksara Latin dan aksara Arab Melayu. Saat ini, generasi muda di Riau lebih memahami penggunaan aksara Latin daripada aksara Arab Melayu. Meskipun mereka mendapatkan pelajaran baca tulis Arab Melayu di sekolah, ketidaktahuan dan kurang pahamnya aturan dalam menulis Arab Melayu akan menyebabkan kesalahan penulisan. Untuk mencegah terjadinya kesalahan penulisan, dipergunakan aplikasi transliterasi (alih aksara). Transliterasi melakukan penyalinan dengan penggantian huruf dari abjad yang satu ke abjad yang lain. Aplikasi alih aksara dirancang berdasarkan aturan-aturan yang ada di buku Pedoman Umum Tulisan Arab Melayu, dan dibangun menggunakan bahasa pemrograman Java (Android). Pengujian dilakukan dengan membandingkan keluaran dari aplikasi terhadap hasil alih aksara oleh pakar aksara Arab Melayu. Akurasi dari hasil pengujian sebesar 95,5%. Persentase akurasi menunjukkan bahwa hasil validitasnya pada kriteria Sangat Valid.
Penerapan Metode Winnowing Fingerprint dan Naive Bayes untuk Pengelompokan Dokumen Radili, Adi; Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 3, No 2 (2017): Desember 2017
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1038.815 KB) | DOI: 10.24014/coreit.v3i2.4418

Abstract

Keanekaragaman dokumen teks serta jumlahnya saat ini terus bertambah yang menyebabkan penumpukan dokumen. Dokumen yang tersebar dan tidak terkoordinasi dengan baik akan menyulitkan pencari informasi dalam mendapatkan informasi yang diinginkan, maka perlu dibuatnya suatu sistem yang dapat mengelompokkan dokumen. Penelitian ini menerapkan metode winnowing untuk pemilihan fitur yaitu fingerprint dan naive bayes untuk pengelompokan. Pengelompokan dokumen dengan menggunakan winnowing fingerprint dan naive bayes mempunyai 8 bidang keahlian dengan menggunakan 1050 dokumen abstrak dengan 90% data latih dan 10% data uji. Pengujian menghasilkan akurasi 40% (k-gram=3, bilangan prima=2 dan jumlah window=8), 49,52% (k-gram=5, bilangan prima=2 dan jumlah window=8), 84,76% (k-gram=8, bilangan prima=2 dan jumlah window=8) dan 67,61% (k-gram=12, bilangan prima=2 dan jumlah window=8). Sedangkan pengujian menggunakan data yang seimbang, yaitu 400 data latih (masing-masing kelas memiliki 50 dokumen) menghasilkan akurasi 20% (k-gram=3, bilangan prima=2 dan jumlah window=8), 27,5% (k-gram=5, bilangan prima=2 dan jumlah window=8), 70% (k-gram=8, bilangan prima=2 dan jumlah window=8) dan 47,5% (k-gram=12, bilangan prima=2 dan jumlah window=8). Konfigurasi winnowing dengan nilai k-gram=8, bilangan prima=2 dan jumlah window=8 akan menghasilkan ciri dokumen yang terbaik untuk pengelompokan dokumen.Kata kunci – Text Mining, Winnowing, Naive Bayes, Fingerprint, Pengelompokan Dokumen
Penerapan Learning Vector Quantization Pada Pengelompokan Tingkat Kematangan Buah Tomat Berdasarkan Warna Buah Sanjaya, Suwanto
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 5, No 2 (2019): Desember 2019
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1466.167 KB) | DOI: 10.24014/coreit.v5i2.8199

Abstract

Tingkat kematangan buah tomat dapat dilihat dari warna buah. Pada penelitian sebelumnya pernah dilakukan penentuan tingkat kematangan buah tomat menggunakan fitur Hue, Saturation, dan Value (HSV), serta metode klasifikasi Learning Vector Quantization (LVQ). Pada penelitian tersebut menggunakan data citra buah tomat dari satu sisi. Pada kenyataanya, tidak semua buah tomat memiliki penyebaran warna yang sama disetiap sisinya. Oleh karena itu dibutuhkan teknik untuk merata-ratakan informasi warna dari beberapa sisi buah. Berdasarkan permasalahan tersebut, maka data citra buah tomat yang digunakan diambil dari empat sisi untuk setiap buahnya. Total data citra yang digunakan adalah 400 citra dari empat sisi dan setelah dirata-ratakan menjadi 100 data. Level kematangan buah tomat yang digunakan adalah 5 level yaitu green, breakers, turning, pink, light red, dan red. Proses pelatihan dan pengujian bobot optimal menggunakan K-Fold Cross Validation. Berdasarkan hasil pengujian, rata-rata akurasi tertinggi adalah mencapai 87,25% yang diuji menggunakan 400 citra setiap sisi buah. Berdasarkan hasil pengujian tersebut dapat disimpulkan nilai HSV yang dihasilkan dari rata-rata penggabungan citra empat sisi dapat dijadikan alternatif untuk menentukan tingkat kematangan buah tomat karena dapat meningkatkan akurasi walaupun tidak terlalu signifikan
Pengelompokan Dokumen Menggunakan Winnowing Fingerprint dengan Metode K-Nearest Neighbour Sanjaya, Suwanto; Absar, Ersad Alfarsy
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 1, No 2 (2015): Desember 2015
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1029.793 KB) | DOI: 10.24014/coreit.v1i2.1229

Abstract

Text mining dapat didefinisikan sebagai suatu proses menggali informasi oleh seorang user yang berinteraksi dengan sekumpulan dokumen menggunakan tools analisis yang merupakan komponen- komponen dalam data mining. Dalam text mining dikenal beberapa metode untuk klasifikasi teks, salah satunya adalah K-Nearest Neightbour (KNN). KNN adalah sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Pada penelitian ini akan dilakukan klasifikasi terhadap dokumen teks menggunakan metode KNN berdasarkan winnowing fingerprint. Winnowing adalah algoritma yang biasa digunakan untuk mendeteksi kesamaan isi suatu dokumen teks dengan cara memecah kalimat yang ada pada dokumen teks menjadi beberapa karakter sepanjang k-grams dan menghasilkan output berupa kumpulan nilai hash yang disebut fingerprint. Penelitian ini mencoba untuk menjadikan fingerprint sebagai ciri suatu dokumen teks lalu mengelompokkan dokumen teks berdasarkan ciri tersebut. Proses klasifikasi diawali dengan mengumpulkan dokumen latih yang akan dijadikan sebagai acuan dalam pengelompokan dokumen. Dokumen latih tersebut diproses dengan metode winnowing untuk mendapatkan ciri dari dokumen tersebut. Dokumen uji yang ingin dikelompokkan juga harus melewati proses winnowing, setelah fingerprint didapat maka dilanjutkan dengan proses klasifikasi menggunakan metode KNN. Dari hasil pengujian terhadap 10 dokumen uji didapat nilai akurasi pengelompokan 80%.
Co-Authors Abdussalam Al Masykur Adrian Maulana Afiana Nabilla Zulfa Ahmad Fauzan Ahmad Paisal Ahmad, Rizmah Zakiah Nur Al Fiqri, M. Faiz Alwis Nazir Alwis Nazir Alwis Nazir Alwiz Nazir Amalia Hanifah Artya Annisa Putri Aqilah, M Alfandri Arif Mudi Priyatno Ariq At-Thariq Putra Aulia Ramadhani Baehaqi Cut Lira Kabaatun Nisa Darmila Deny Ardianto Dodi Efendi efni humairah Eka Pandu Cynthia Elin Haerani Elvia Budianita Erni Rouza, Erni Ersad Alfarsy Absar, Ersad Alfarsy Fadhilah Syafria Fadhilla Syafria Fakhrezi, Muhammad Dzaki Febi Yanto Felian Nabila Fitri Insani Fitri Insani Fitri Insani (Scopus ID: 57190404820) Fitri, Dina Deswara Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Hafez Almirza Hardiansyah, Muhammad Vio Harni, Yulia Hartini Hartini Iis Afrianty Iis Afrianty Ikhwanul Akhmad DLY Insani (Scopus ID: 57190404820), Fitri Irman Hermadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Jasril Jasril Karina Julita Kurnia Rahman, Fikri Kurniawan, Saifur Yusuf Lestari Handayani Lestari Handayani Lestari Handayani Lia Anggraini Lola Oktavia M. Fadil Martias Masaugi, Fathan Fanrita Maulana Junihardi Mazdavilaya, T Kaisyarendika Megawati Megawati Morina Lisa Pura Muhammad Affandes Muhammad Fikry Muhammad Irfan Syah Muhammad Irsyad Muhammad Irsyad Nabyl Alfahrez Ramadhan Amril Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Negara, Benny Sukma Novi Yanti Novriyanto Novriyanto Novriyanto Pangestu, Yoga Pizaini Pizaini Puspa Melani Almahmuda Putri Ayuni, Desy Radili, Adi Rahma Shinta Rahmad Abdillah Rahmad Abdillah Ramadhan, Muhammad Ilham Ramu Will Sandra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Saputra, Nugroho Wahyu Sarah Lasniari Sarah Lasniari Shahira, Fayza Sugandi, Hatami Karsa SURYA ADITYA GD Surya Agustian Syaputra, Muhammad Dwiky Ulfah Adzkia Vitriani, Yelfi Yani, Susmi Syahfrida Yelfi Vitriani Yeni Fariati Yusra Yusra, Yusra Yusril Hidayat