Claim Missing Document
Check
Articles

EFFECT OF PENETRATION POSITIONS BULLETS ON A PERFORATED PLATE AGAINST BALLISTIC RESISTANCE OF FIBER METAL LAMINATE (FML) Fadly, Muhammad Syaiful; Purnowidodo, Anindito; Setyarini, Putu Hadi; Mustafa, Mustafa; Hamzah, Muhammad Sadat
International Journal of Mechanical Engineering Technologies and Applications Vol. 6 No. 1 (2025)
Publisher : Mechanical Engineering Department, Engineering Faculty, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/MECHTA.2025.006.01.3

Abstract

This study aims to examine the phenomena that occur due to projectile penetration on fiber metal laminate. Ballistic testing was carried out experimentally according to National Institute of Justice standards (NIJ Standard 0101.06 level III-A) using a 9 mm full-metal jacket projectile with a normal angle of attack (90° to the target). The results showed that fiber metal laminate could withstand the projectile rate by penetrating the first layer (aluminum plate) and the second layer (aramid/epoxy), while the last layer was deformed to form a bulge. The pierced aluminum plate is characterized by petalling failure. Meanwhile, the aramid/epoxy was penetrated by the projectile with failure of the primary yarn to break the fiber.
EXPERIMENTAL STUDY OF MECHANICAL PROPERTIES AND CORROSION RATE OF LOW CARBON STEEL AISI 1020 RESULTING FROM LOW PRESSURE GAS CARBURIZING Audrey, Reinaldo Evan; Setyarini, Putu Hadi; Sugiarto, Sugiarto; Sholikin, Atfalus
International Journal of Mechanical Engineering Technologies and Applications Vol. 6 No. 2 (2025)
Publisher : Mechanical Engineering Department, Engineering Faculty, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/MECHTA.2025.006.02.6

Abstract

Within the realm of demanding marine operations, tugboat chain sprockets have a vital function in guiding and controlling giant ships. Marine conditions provide considerable obstacles for chain sprockets, which are commonly constructed from low-carbon steel for their cost-effectiveness and mechanical appropriateness. One such problem is corrosion, which can result in material failure. AISI 1020, a low-carbon steel containing around 0.2% carbon, provides exceptional toughness and resistance to corrosion, especially for applications in mining and oil platforms. The poor corrosion resistance of the material, worsened by exposure to air and salt in saltwater, requires a remedy. In order to enhance wear and corrosion resistance, low-pressure gas carburizing (LPGC) is suggested as a method to augment surface hardness and establish a durable oxide layer. This approach provides benefits in managing carbon penetration with less distortion and environmental effect as compared to conventional carburizing methods. Evidence indicates that low-pressure carburizing increases the flow of hydrocarbon gas, which in turn promotes even diffusion of carbon, thereby enhancing the distribution of hardness. The work explores the efficacy of LPGC in improving the operating longevity and efficiency of chain sprockets in marine environments. Its objective is to investigate how carbon augmentation via LPGC changes the steel microstructure, enhances corrosion resistance, and increases tensile strength. Materials utilized were AISI 1020 low-carbon steel plates. They were treated by regulating temperature fluctuations and specific durations of holding. Subsequently, the plates underwent measurements of Micro-Vickers hardness, tensile strength, SEM-EDX analysis, and corrosion using a Tafel Extrapolation. Results indicate a substantial rise in hardness in carburized specimens, with the best result achieved at 950°C for 60 minutes. According to the study, LPGC successfully enhances the mechanical and anti-corrosive characteristics, therefore prolonging the lifespan of nautical components and maximizing their performance under demanding circumstances.
Comparative Efficacy of Two Bamboo-Derived Activated Carbons for Hospital Wastewater Remediation Setyarini, Putu Hadi; Pembayun, Hanum Surya; Sulistyarini, Dwi Hadi; Purwaningtyas, Nuretha Hevy; Dewi, Francisca Gayuh Utami
Advance Sustainable Science Engineering and Technology Vol. 7 No. 3 (2025): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v7i3.1895

Abstract

Liquid medical waste containing pathogens and hazardous chemicals can pollute the environment and endanger human health. The increasing volume of waste during the COVID-19 pandemic adds urgency to find effective and sustainable treatment methods. However, environmentally friendly and efficient solutions are still limited. This study aims to explore the utilization of activated carbon from two local bamboo species, Gigantochloa apus (GA) and Bambusa vulgaris (BV) as alternative adsorbents in the treatment of liquid medical waste. Two-year-old bamboo was traditionally carbonized and activated using 0.3 M sodium chloride solution. The 50 mesh charcoal powder was tested using BET surface area analysis with QUADRASORB evo™ instrument, morphology using FESEM (FEI Quanta 650), and pollutant reduction efficiency through pH, TDS (HAIK EZ 9909), COD (HACH DBR 200 closed reflux method), and BOD (Winkler method with BOD 6 VELP system) measurements. The results showed that GA activated carbon exhibited a much higher adsorption capacity due to its larger BET surface area compared to BV. In addition, pH and Total Dissolved Solids (TDS) analysis showed that wastewater treated with GA activated carbon exhibited a greater reduction in TDS levels. The study also evaluated the reduction of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD), which confirmed that GA provided higher pollutant removal efficiency than BV. These findings underscore the potential of GA and BV as effective adsorbents for medical wastewater treatment, offering a sustainable solution to improve water quality and reduce environmental impacts associated with liquid medical waste.
Pengamatan Metalografi Baja JIS S20C terkait Fenomena Perubahan Mikrostruktur Hasil Low Pressure Gas Carburizing (LPGC) Audrey, Reinaldo Evan; Setyarini, Putu Hadi; Sugiarto, S
Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri 2024: Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini berfokus pada pengamatan perubahan mikrostruktur dan peningkatan nilai kekerasan pada baja JIS S20C, yang merupakan material industri dengan biaya yang ekonomis namun memiliki keterbatasan dalam sifat mekanisnya. Proses Low Pressure Gas Carburizing (LPGC) diaplikasikan pada baja tersebut dengan tujuan untuk meningkatkan sifat-sifat material, yang mana proses tersebut dilakukan pada suhu 950°C dengan durasi penahanan selama 60 menit. Pengamatan yang dilakukan menunjukkan perubahan signifikan pada mikrostruktur baja dari yang sebelumnya didominasi oleh fasa perlit-ferrit menjadi martensit. Transformasi ini berkontribusi pada peningkatan kekerasan material yang cukup signifikan, dari nilai awal 249,4 HV menjadi 730,8 HV. Peningkatan kekerasan tersebut dihasilkan oleh terbentuknya lapisan martensit yang padat dan seragam, akibat dari difusi karbon ke dalam permukaan baja selama proses karburisasi. Selain itu, metode LPGC juga terbukti efektif dalam mengontrol difusi karbon yang lebih merata, mengurangi risiko distorsi geometris, serta meningkatkan ketahanan baja terhadap korosi. Hasil penelitian ini menegaskan bahwa LPGC merupakan metode yang efisien dan efektif untuk memodifikasi sifat mekanik baja karbon rendah, sehingga menjadikannya lebih sesuai untuk berbagai aplikasi industri yang menuntut material dengan kekerasan dan durabilitas yang tinggi.
PENGARUH WAKTU SOLUTION TREATMENT DAN AGING TERHADAP KEKERASAN DAN KEKUATAN TARIK ALUMINIUM PADUAN AA 7075 – T6 Naafila, Amira; Purnowidodo, Anindito; Setyarini, Putu Hadi
Jurnal Rekayasa Mesin Vol. 15 No. 1 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i1.862

Abstract

Aluminium 7075 is a material used to plane body, because this material is corrosion-resistant, and its properties can be formed well, low density and light. Aluminium 7075-T6 which is mainly used for aircraft manufacturing, has a content of 0,37% Zn, 0,13% Mg, 0,07% Cu and 0,20% Si. Because this material 7075-T6 is heat treatable. It will be treated with the solution treatment (420ºC) and aging treatment (250ºC) each in 1hour and 2,5 hours to make precipitation. The hight strength and low hardness to find out the characteristics of aluminium 7075-T6 tensile strength testing, hardness testing and EDS (Energy Dispersive X-Ray Spectroscopy) testing will be carried out. And the result of tensile strength testing for raw material has an ultimate tensile strength (125,000MPa), elongation (0,02%) and the result of Rockwell hardness testing has (10,36 HRt). This material done by processed solution treatment with temperature (420ºC/hour, 2,5 hours/ 150ºC) has an ultimate tensile strength (95,833 MPa), elongation (0,26%) and for the Rockwell hardness testing the result is (49,2 HRt). The heat treatment made the solution treated aluminium grain bigger but increasing the strength because of precipitation.
OPTIMASI PROSES TURNING PADA AA 6061 DENGAN METODE MINIMUM QUANTITY LUBRICATION Anshori, Mohammad; Sonief, Achmad As'ad; Setyarini, Putu Hadi
Jurnal Rekayasa Mesin Vol. 15 No. 1 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i1.1429

Abstract

The use of vegetable oil-based cutting fluids under minimum quantity lubrication (MQL) lubrication has been suggested as a potential alternative. The cutting fluid is conveyed in the form of fine droplets with compressed air delivered precisely to the cutting zone. This study aims to determine the effect of variations of rubber seed oil and coconut oil as a cutting fluid on the surface roughness of the machining process using the MQL method. Researchers used the parameters of cutting fluid flow rate of 120 ml/hour and 180 ml/hour, cutting speed of 500 rpm, feed rate of 0.011 mm/rev, depth of cut of 0.5 mm with variations of coconut oil 10%, 20%, 30%. The results showed that the lowest surface roughness value was at a flow rate of 180 ml/hour with a 30% variation of 0.886 µm, while the highest surface roughness value was at a flow rate of 120 ml/hour with a 10% variation of 1.164 µm, meaning that the greater the flow rate and variation cutting fluid results in a decrease in surface roughness, this is due to the influence of the addition of coconut oil, the more coconut oil is added, the surface roughness value decreases. The surface roughness value decreases as the viscosity decreases, because the viscosity of coconut oil is lower than that of rubber seed oil, so that the flow rate of the cutting fluid is able to work optimally to lubricate the contact area.
KARAKTERISASI PENAMBAHAN KITOSAN DAN HAP PADA PLA TERHADAP SIFAT MEKANIK KOMPOSIT Serfandi, Dina Novera; Setyarini, Putu Hadi; Purnami, Purnami; Sulistyono, Sulistyono
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1475

Abstract

PLA (poly lactid acid) is a biodegradable polyester that can be applied to tissue engineering because it is biocompatible and non-toxic. The purpose of this study to determine the mechanical characteristics of mixing PLA, chitosan, and Hydroxyapatite. There were 4 variations in this study, namely PLA 100 (pure PLA), PLA-chitosan-Hydroxyapatite 94-3-3 (Mix 1), PLA-chitosan-Hydroxyapatite 94-0-6 (Mix 2), PLA-chitosan-Hydroxyapatite 94-6-0 (Mix 3). The method of processing specimens is carried out by mixing the material using an extrusion machine to form filaments, then the filaments are cut to a size of 3-5 mm for injection processing with a process temperature of 170-190°C and an injection pressure of 5 Bar. The tensile strength value of the composite decreased by 0.14% from the tensile strength value of pure PLA it’s cause of the characteristic of chitosan and HAp were stiff and brittle.
KARAKTERISASI BIODEGRADASI PADA KOMPOSIT POLYMER POLYLACTID ACID (PLA) DENGAN PENAMBAHAN CHITOSAN DAN HYDROXYAPATITE Serfandi, Dina Novera; Setyarini, Putu Hadi; Purnami, Purnami; Sulistyono, Sulistyono
Jurnal Rekayasa Mesin Vol. 14 No. 3 (2023)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v14i3.1476

Abstract

Polylactid Acid (PLA) is a biodegradable polymer made from natural ingredients so it is safe to use for biomaterials. The purpose of this study was to determine the biodegradation characteristics of the addition of chitosan powder and Hydroxyapatite to PLA. There were 4 variations in this study, namely PLA 100 (pure PLA), PLA-chitosan-Hydroxyapatite 94-3-3 (Composite 1), PLA-chitosan-Hydroxyapatite 94-0-6 (Composite 2), PLA-chitosan-Hydroxyapatite 94-6-0 (Composite 3). Samples were prepared using the extrusion method to form filaments, then the filaments were injected with a temperature of 170-190°C and an injection pressure of 5-6 bar. Characterization was carried out using the Immerse Test, FTIR Test, and SEM-EDS Test. The results of the Immerse Test showed an increase in sample mass of 1.04%, 1.1%, 1.05% and 1.14% respectively. FTIR test results did not show any new functional groups in the composite. The results of the SEM test indicated the presence of Na and Cl deposits on the sample surface as evidenced by the results of the EDS test that all samples contained Na and Cl elements. So that the weight gain occurs because the three materials are not chemically mixed which easily separate and cause cavities, these cavities are filled with HBSS liquid.
COMPARISON OF THE ACTIVATION OF GIGANTOCHLOA APUS TO INCREASE THE ADSORPTION ABILITY OF MEDICAL LIQUID WASTE Setyarini, Putu Hadi; Iksandy, Jemmie; Fachrezi, M. Qashmal; Sonief, Achmad As'ad
Jurnal Rekayasa Mesin Vol. 15 No. 1 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i1.1796

Abstract

Medical facilities are exposed to substantial health and safety hazards as a result of the existence of perilous substances such as germs, viruses, and mold. The integration of drug use courses in medical education is hindered by constraints such as time limitations, a scarcity of well-informed personnel, and insufficient institutional backing. In order to mitigate these dangers, a comprehensive assessment of the risks, effective instruction, and stringent procedures are required. Effective waste management systems and precise detection of influent are crucial. Activated carbon, a highly porous material, is extensively utilized as an adsorbent in several industrial applications. Bamboo charcoal, a desirable lignocellulosic substance, is employed in the manufacturing process of activated carbon. The objective of the study was to generate and examine activated carbons obtained from Gigantochloas Apus (GA) through the utilization of sodium hydroxide (NaOH) and sodium chloride (NaCl) activation methods. The study determined that was the most efficient activating agent for achieving ideal ash content characteristics, resulting in the lowest ash percentage of 6.21%. The acidity of medical liquid waste is increased and its adsorption duration is extended by activating GA with NaCl and NaOH.
The Influence of Homogenization on Corrosion Rate of Zinc as Sacrificial Anode for API 5L X65 Steel Fitriani, Siti Noor; Setyarini, Putu Hadi; Risonarta, Victor Yuardi
International Journal of Mechanical Engineering Technologies and Applications Vol. 1 No. 1 (2020)
Publisher : Mechanical Engineering Department, Engineering Faculty, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/mechta.2020.001.01.2

Abstract

Corrosion is a material degradation due to electrochemical reactions involving electrical current. Corrosion cannot be avoided but it can be managed. This work investigated the influence of holding time and temperature variation for the homogenization process of Zinc (Zn) alloy. This zinc alloy is used as a sacrificial anode to decrease the corrosion rate of API 5L X65 steel. The investigation was performed with 3 varied holding times of 2, 4 and 6 hours of homogenization process while the temperature was varied at 150, 250 and 350ºC. After that, a zinc alloy with a size of 40mm x 0.44 mm x 10 mm was connected to a cathode.  Together with steel, both metals formed galvanic cells in this study. The metal with lower electricity potential became the anode and corroded. On the other hand, metal with higher electrical potential became the cathode and did not corrode. The lowest corrosion rate was obtained for homogenization at 150ºC and 2 hours holding time. At this condition, the corrosion rate decreased by 38.36%. This occurred since higher temperatures and longer holding time of Zinc homogenization resulted in bigger and rougher grains.