Heri Syaeful
Pusat Pengembangan Geologi Nuklir – BATAN Jl. Lebak Bulus Raya No.9 Pasar Jumat, Jakarta Selatan

Published : 26 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 26 Documents
Search

Penentuan Koefisien Hidraulik pada Tapak NSD, Serpong, Berdasarkan Metoda Uji Permeabilitas In-Situ Syaeful, Heri; Sucipta, Sucipta
EKSPLORIUM Vol. 34 No. 1 (2013): MEI 2013
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2013.34.1.646

Abstract

Inline with the increase of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values ​​in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values​ranging from 10-6 to 10-2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8-24 m, with hydraulic conductivity value ​​reached 10-2 cm/sec.
Studi Geologi Teknik Tapak Penyimpanan Akhir Limbah Radioaktif (LRA) Demo Plant Tipe NSD Kedalaman Menengah di Puspiptek, Serpong Syaeful, Heri; Sucipta, Sucipta; Sadisun, Imam Achmad
EKSPLORIUM Vol. 35 No. 1 (2014): MEI 2014
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2014.35.1.1367

Abstract

Final disposal of radioactive waste intended to keep radioactive substances does not released to the environment until the substance activity decreased to the safe level. Storage concept of radioactive waste (RAW) final disposal that will be developed at the area of Puspiptek, Serpong is near surface disposal (NSD). Based on depth, NSD divided on two type, near surface NSD and medium depth NSD. Concept NSD in this research is medium depth NSD, which is between 30–300 meters. During NSD construction in medium-depth required the works of sub-surface excavation or tunneling. Analysis of in-situ stresses and sub-surface deformation performed to recognize the stress magnitude and its distribution that developed in soil/rock as well as the deformation occurred when sub-surface excavation takes place. Based on the analysis, acknowledged the magnitude of tensional and compression stress and its distribution that range from -441 kPa to 4.028 kPa with values of natural deformation or without reinforcement between 4.4 to 13.5 cm. A rather high deformation value which is achieved 13.5 cm leads to necessity of engineering reinforcement during excavation. The designs of engineering reinforcement on every excavation stage refer to the result of modeling analysis of stress and deformation distribution pattern.
Analisis Geologi Teknik Longsor di Desa Kuatae, Kecamatan Kota Soe, Nusa Tenggara Timur Syaeful, Heri; Kamajati, Dhatu; Rachael, Yoshi; Damaledo, Ebenheser
EKSPLORIUM Vol. 42 No. 1 (2021): MEI 2021
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2021.42.1.6081

Abstract

Landslides in Kuatae Village, Kota Soe District often occur during the rainy season. The slope failures cause damage to houses and other infrastructures. The research of slope failure has been carried out by using engineering geological mapping, engineering geological drilling, laboratory test, slope stability analysis, and identification of countermeasure options. Based on the mapping results, slope failures occur in two models, the first one was coral limestone blocks translation failure over marl and claystone, and the second one was rotation failure on marl that controlled by the base layer which contact with claystone. The result of the standard penetration test on claystone and marl showed a very high consistency value. The slope stability analysis had shown the slope is in a stable state, but slope failure occurred in several places on the marl and claystone area. Those indicated that the material had encounter shear strength degradation under several circumstances. Further investigation on the degradation of the rock material, such as slake durability and swelling clay are very important to determine the most appropriate countermeasure option to be applied in the landslide case of Kuatae Village.
Potensi Thorium dan Uranium di Kabupaten Bangka Barat Ngadenin, Ngadenin; Syaeful, Heri; Widana, Kurnia Setiawan; Nurdin, Muhammad
EKSPLORIUM Vol. 35 No. 2 (2014): NOVEMBER 2014
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2014.35.2.2754

Abstract

Thorium and uranium in Bangka Island are mainly found in monazite mineral. In the geological point of view the monazite formed in S type granite, sandstones and alluvial deposits. In Bangka Baratwhere several S types granite and also alluvial deposites and this area considered as a potential area for monazite placer. S type granites are predicted as a source of monazite while alluvial deposits are considered as a dispersion place for deposition of monazite. The purpose of this study is to determine the geological information and to know the hypothetical potency of thorium and uranium resources in alluvial deposits. The methodsusedin this study are geological mapping, measurement of thorium and uranium contents in the rock, sampling of granite for petrographic analysis, sampling of heavy mineral in alluvial deposits for grain size analysis. Results of the research show that the lithology of West Bangka region composed of schist unit, meta-sandstone unit, granite intrusion, diabase intrusion, sandstone unit and alluvial deposits. Monazite is found in granite intrusion, sandstone unit and alluvial deposits. Evolving fault strend to northwest-southeast, northeast-southwest and west-east.The results of the grain size analysis of heavy mineral shows the average percentage of monazite in the heavy mineral is 6.34%. Other potential minerals contained in placer deposits are zircon 36.65%, ilmenite 19.67% and cassiterite 14.75%.
Studi Keberadaan Mineralisasi Uranium Di Daerah Biak Numfor, Provinsi Papua Barat Suharji, Suharji; Subiantoro, Lilik; Syaeful, Heri; Widana, Kurnia Setiawan; Prabowo, Hery
EKSPLORIUM Vol. 35 No. 2 (2014): NOVEMBER 2014
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2014.35.2.2757

Abstract

This study was conducted based on the findings of radioactive minerals in the form of indication of relatively high radiation dose rate anomalies. The hypothesis underlying the existence of a high radiation dose rate is the deposition of uranium derived from basalt rock Auwea Formation, uranium enrichment derived from limestone to the soil surface, and the deposition of uranium resulted from the use of fertilizers in agriculture. Therefore the research aimed to obtain the conclusion of its hypotheses. Research methodology applied is geological mapping, radiometric measurement of uranium (U), thorium (Th), and potassium(K) in the field using RS 125 to determine in-situ grade of elements, radiometric measurements of plant fertilizer, sampling, and laboratory analysis of the element grade. Based on the analysis and evaluation of survey data it is known that in the area around Maryendi, Darmapis and Denafi, indicate the presence of anomalous zones which is characterized by the presence of uranium (U) dark brown soil – reddish brown, with the value of the radiation dose of 1.9 to 4,032.3 nSv/h and grade of uranium (U)has 20.27 to 325 ppm eU. Based on the analysis of source rock of uranium, it is concluded that limestone is the source rock of uranium in research area. The results of field observations of the fertilizer and basalt rock of Auwea Formation, it is found that no anomalies may indicate material/rock that acts as the source of uranium.
Karakterisasi Geoteknik Fondasi Kandidat Tapak PLTN dengan Metode Seismik Refraksi Haryanto, Dwi; Rachael, Yoshi; Kamajati, Dhatu; Prasetyo, Gagah Hari; Syaeful, Heri; Indrastomo, Frederikus Dian
EKSPLORIUM Vol. 42 No. 2 (2021): NOVEMBER 2021
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2021.42.2.6538

Abstract

Presidential Regulation (Perpres) number 38 of 2018 concerning the National Research Master Plan for 2017–2045, the Government of Indonesia establishes several main areas that will become national research priorities, one of which is the energy sector. In the research theme of electricity technology based on new and renewable low/zero carbon energy, there is the topic of research on commercial-scale Nuclear Power Plant (NPP) technology. On the research topic, it was determined that within the research period of 2020–2024, a prototype nuclear power plant would be produced. Research related to the geotechnical characterization of the nuclear power plant site using the seismic refraction method was carried out to complement the previous research data. The purpose of this study was to determine the subsurface rock layer profile for estimation of work related to nuclear power plant foundations. Geological mapping and geophysical data acquisition, processing, as well as soil/rock interpretation based on the compression wave velocity (Vp) parameter are carried out to achieve this goal. The results of geological mapping show that there are 2 igneous rock units, namely quartz diorite and andesite. The results of processing and interpreting seismic refraction data produced a cross-sectional model of Vp in the subsurface rock layers. There are 3 rock layers in the research location, namely soil layer (Vp = 361–715 m/s), weathered igneous rock layer (Vp = 1.386–2,396 m/s), and fresh igneous layer (Vp = 3.789–6.133 m/s). The estimated density of fresh igneous rock based on calculations is 2.43–2.74 g/cm3. The modeling results can show the depth and structure of the subsurface layer of fresh igneous rock that can be the foundation of nuclear power plants.
Analisis Karakteristik Massa Batuan di Sektor Lemajung, Kalan, Kalimantan Barat Syaeful, Heri; Kamajati, Dhatu
EKSPLORIUM Vol. 36 No. 1 (2015): MEI 2015
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2015.36.1.2768

Abstract

Rock mass characterization is required in design of rock opening, which calculation of engineering characters of rock mass become one important parameter toconsider. Lemajung sector is one of prospect area for uranium mining in Kalan, West Kalimantan. Purpose of research is to acquire rock mass characteristicsas basic data for planning the development of mining technique of ore deposit. Methodology applied is rock sampling for rock mechanic laboratory analysis, observation of joints, and observation of groundwater condition. Rock parameters analyzed includes uniaxial compressive strength (UCS), rock quality designation (RQD), joint spacing, joint condition, and groundwater. Analysis concluded that metasiltstonewhich is lithology contained uranium in Lemajung Sector has rock mass rating (RMR) value of 56 or rock mass class III: fair rock in the depth of around 60 m, and in the depth of 280 m RMR value reach 82 or rock mass class I: very good rock. RMR value data furthermore could be used for analysis of tunneling in the model of underground mine or slope stability analysis in the model of open pit mine.
Evaluasi Massa Batuan Terowongan Eksplorasi Uranium Eko-Remaja, Kalan, Kalimantan Barat Kamajati, Dhatu; Syaeful, Heri; Garwan, Mirna Berliana
EKSPLORIUM Vol. 37 No. 2 (2016): NOVEMBER 2016
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2016.37.2.3110

Abstract

Eko-Remaja uranium exploration tunnel, Kalan, West Kalimantan is one of the important facilities for uranium deposit research. The tunnel was built in 1980 with a length of 618 meters penetrating Eko Hill on both sides. The rock inside the tunnel is relatively compact, but it has weak zones in some area. Ground supporting is a method used to overcome the soil and rock collapses which occurred in the tunnel weak zones. Installation of ground supporting system throughout the recent time based on the soil collapse pattern, which occurred when the tunnel opened without any specific study related to rock mass characterization and the requirement of ground support system. This research conducted to evaluate the safety level of Eko-Remaja tunnel and the suitability of ground support location. The evaluation performed by comparing the rock mass characteristics using Rock Mass Rating (RMR) method between the installed rock support and uninstalled rock support locations. Based on the analysis result, RMR value on the installed ground support is classified as class IV or poor rock. Meanwhile, on uninstalled location, the rock is classified as class II or fair rock. Based on the correlation between RMR calculation result and Eko-Remaja tunnel roof span, it is concluded that tunnel ground supports position which are represented by observation location on 38 m, 73 m, and 165 m depth are suitable with rock mass characterization system using RMR method.
Evaluasi Sistem Pengendapan Uranium Pada Batuan Sedimen Formasi Sibolga, Tapanuli Tengah Sukadana, I Gde; Syaeful, Heri
EKSPLORIUM Vol. 37 No. 2 (2016): NOVEMBER 2016
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2016.37.2.3112

Abstract

Uranium in nature formed in various deposit type, depends on its sources, process, and depositional environments. Uranium occurrence in Sibolga, hosted in sedimentary rocks of Sibolga Formation, is properly potential to develop; nevertheless, the depositional pattern and uranium mineralization process so far had not been recognized. The research aim is to determine the rock distribution patterns and the existence of uranium grade anomalies based on surface geology and borehole log data. Mineralization occurrences from borehole log data distributed from basalt conglomerate unit (Kgl 1), sandstone 1 unit (Bp 1), conglomerate 2 unit (Kgl 2), and sandstone 2 unit (Bp 2) with their distribution and thickness are thinning to the top. Mineralization distribution in the eastern area, mainly on Kgl 1 unit, dominated by detritus materials from epi-genetic depositional in the form of monazite which is formed along with the formation of granite as its source rock. Meanwhile, mineralization on the upper rocks units formed a channel pattern trending northeast-southwest, which formed in syn-genetic process consist of uraninite, carnotite, and coffinite. Sibolga Formation deposition originated from east to west and uranium deposit formed because of the differences of depositional environment from oxidation in the east to the more reductive in the southwest. The increasing of organic materials in southwest basin caused the reduction condition of depositional environment.
Interpretasi Lingkungan Pengendapan Formasi Batuan Menggunakan Analisis Elektrofasies di Lokasi Tapak Puspiptek Serpong Syaeful, Heri; Muhammad, Adi Gunawan
EKSPLORIUM Vol. 38 No. 1 (2017): MEI 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.1.3538

Abstract

The activity of subsurface material composing site foundation characterization is part of nuclear installation siting study. Characterization conducted by several methods, such as understanding the depositional environment of rock formations. As a segment of depositional environment interpretation method, facies model analysis based on electrofacies provides quicker information on depositional system of rock formation. Methodology applied is gamma ray log (log GR) interpretation using relative correlation between log shape variation and sedimentation facies. Based on the analysis, Bojongmanik Formation was deposited on marine-lagoonal environment with very low wave influence. Log GR that shows shape of funnel, serrated, and symmetry, indicate shoreface, lagoon, and tidal point bar facies. The direction of sedimentation, basin, and supply of Bojongmanik Formation interpreted relatively to the north. Serpong Formation deposited on meandering river system, and composed of point bar deposit, crevasse splay, and floodplain deposit. The result of analysis is expected to be guidance in further analysis related to the characterization of foundation materials.