Claim Missing Document
Check
Articles

Found 36 Documents
Search

Effects of Binahong (Anredera Cordifolia) Leaf Ethanol Extracts on Blood Glucose Levels and Pancreas Histopathology in Hyperglycemic Rats Sri Wahjuni
Journal of Global Pharma Technology Volume 11 Issue 04.
Publisher : Journal of Global Pharma Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Background: The use of binahong leaf has been carried out for medical purposes for centuries. Severalstudies have shown that binahong contain alkaloids, saponins, tannins, glycosides, and terpenes,which can be known to have effects to reduce blood sugar levels. Objective: This study to determinethe effect of binahong leaf ethanol extract in reducing blood glucose and histopathological change inhyperglycemic rats. Method: This study was an experimental study using Wistar rats that weredivided into five groups. The normal group was given with distilled water (P0), the positive controlgroup received glibenclamide (P1), and intervention group was given orally binahong leaf extract ofethanol with a dose of 10mg/kg (P2), 15 mg/kg (P3) and 20 mg/kg (P4). Blood sugar level wasevaluated from the initial day of measurement to two weeks. Pancreas tissue was obtained toevaluate the histopathological change. Results: Mean blood sugar level in each group respectively94.28±6.19 mg/dL, 133.61±47.05 mg/dL, 117.56±26.73 mg/dL, 124.77±37.05 mg/dL, and 136.57±47.55mg/dL. The result of Kruskal-Wallis test was p=0.011. Multiple comparison test showed significantresult between P4 with P0 (p=0.011). Conclusion: Binahong leaf ethanol extract with a dose of 20mg/kg significantly reduce blood glucose level in the hyperglycemic rat.Keywords: Binahong, Anredera cordifolia, Blood glucose, Hyperglycemic rat.
Red Piper Crocatum Leaves Extract Ethanol Lowering Malondialdehyde (MDA) and Blood Glucose Level In Hyperglycemic Wistar Rat Sri Wahjuni; I Made Sukadana; dan Luh Putu Arisanti
Journal of Global Pharma Technology Volume 09 Issue 05
Publisher : Journal of Global Pharma Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Changes in fast-food behavior became one cause of diabetes. Potential of the red betel leaf (Piper crocatum) can lower blood sugar levels allegedly because it contains antioxidant-potent compounds inductively induce certain organs to produce insulin hormones that play a role in lowering glucose levels in the blood.The aim of the study is to determine the effectiveness of Piper crocatum leaf ethanol extract in fixing the pancreas β-cell damage rate in alloxan induced hyperglycemic Wistar Rat. Methods: This study used randomized pre-and posttest control group design. Twenty-four (24) male Wistar rats divided into 6 groups namely P0 positive control (P0), P1 as a negative control (allowance 125 mg Kg -1BW), P2 (alloxan and extract dose 50 mgKg-1 BW), P3 (alloxan and extract dose 100 mg Kg -1 BW), P4 (alloxan and extract dose 150 mg Kg - 1 BW), P5 (alloxan and glibenclamide 0.18 mg/day 200g -1BW). Blood glucose measurement was taken through a vein tail performed by the glucose test method. Measurement of MDA levels, blood was taken from the jugular vein and analyzed by the TBARS method. The yield of Piper crocatum extraction with ethanol solvent was 13,1%.  The most significant results were shown by dosing of 150 mg Kg -1BW and extract of 50 mg Kg -1 BW gave a comparable effect to glibenclamide as a blood sugar-lowering drug. The results of phytochemical tests showed that Piper crocatum contains phenolic, alkaloid, and steroid. The results of GC-MS analysis of extracts active Piper crocatum were suspected to contain 29 compounds of 13 compounds known as phytol, neophytadiene, β-bisabolene, germacrene-D, α-humulene, sulfamethoxazole, caryophyllene, nandrolone phenylpropionate, thiamin, linalool, β-ocimene, Anthocyanin, and β-myrcene.Keyword: Red Piper crocatum leaf, Blood glucose, MDA (Malondialdehyde).
Effect of Ethanol Extracts of Mustard Green (Brassica rapa L.) on Streptozotocin Induced Rats Sri Wahjuni
Journal of Global Pharma Technology Volume 12 Issue 02 (2020) Feb. 2020
Publisher : Journal of Global Pharma Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Objective: This experimental study was conducted to evaluate the effect of the mustard green extract on blood glucose and the pancreas histopathological feature. Methods: Five groups of rats divided into the control group that received standard food (P0) and streptozotocin-induced group (P1, P2, P4, and P4). P1 (positive control group) was given glibenclamide; P2, P3, and P4 (treatment group) were given mustard green ethanol extract at a dose of 0.5; 2.0; and 5.0 mg/kg body weight/day respectively. The separation of ethanol extract of mustard green was carried out by  LC-MS/MS. One way ANOVA and Post hoc test was conducted to evaluate the mean difference of the blood glucose. Results: Post hoc test showed significant result for P0 vs P3 (p<0.001), P0 vs P4 (p=0.001), P1 vs P2 (p=0.048), P2 vs P3 (p=0.001). Comparison between P1 and treatment group was found a similar effect on blood glucose between P1 vs P3 (p=0.048) and P1 vs P4 (p=0.830). Histological studies showed the administration of ethanol extract of mustard green showed a restorative effect. Conclusion: Administration of ethanol extract of mustard green decrease the level of blood glucose and might be a usable treatment for hyperglycemia.Keywords: Mustard green (Brassica rapa L.), Streptozotocin, Hyperglycemic effects.
The Development of Chicken Coop Automatic Remote Visual Monitoring System Wahjuni, Sri; Sanjiwo, Suryo Hamukti; Wulandari, Wulandari; Akbar, Auriza Rahmad
Scientific Journal of Informatics Vol 9, No 2 (2022): November 2022
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v9i2.34630

Abstract

Purpose: A remote visual monitoring system will be very helpful for chicken farmers to monitor their cages, that usually located away from their houses. This system needs adequate bandwidth in transmitting the video over the internet, which is usually very limited in urban areas. The main goal of this research is to develop an automatic chicken coop remote monitoring system and define the optimum video resolution to be transmitted. Methods: We used an 8 MP Raspberry Pi camera V2 to record the video and send the results to Google Drive by utilizing the GDrive API. Furthermore, a live streaming video from the chicken coop is accessible through a simple HTTP web page utilizing ngrok as a tunneling software so that the live streaming video can be publicly accessed from anywhere using a web browser. Three video resolutions of 640x480, 800x600, 1024x768 with 15 and 30 framerates were used in our experiments. Each scenario has a duration of five minutes and takes 12 times.Result: The experiment results showed, resolutions that provide a stable video recording and streaming are 640x480 and 800x600. The resulting system succeeded in performing live streaming along with the process of data acquisition. Value: The Google Drive infrastructure is used because of its popularity and convenience by people with limited digital literacy such as smallholder chicken farmers. Furthermore, the video produced by this system can be used in supporting research of chicken behavior pattern identification to build a system notification of an emergency situation in the cage.
EVALUATION OF INFRASTRUCTURE READINESS IN SUPPORTING THE IMPLEMENTATION OF E-GOVERNMENT USING THE COBIT 5 FRAMEWORK. CASE STUDY: PADANGSIDIMPUAN CITY GOVERNMENT: English Alfiansyah Halomoan Siregar; Irman Hermadi; Sri Wahjuni
Jurnal Sistem Informasi Vol. 15 No. 1 (2019): Jurnal Sistem Informasi (Journal of Information System)
Publisher : Faculty of Computer Science Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (491.119 KB) | DOI: 10.21609/jsi.v15i1.767

Abstract

The application of information technology (IT) has now become a necessity in all aspects of both individuals, groups or organizations and even government institutions. The implementation of IT in government is a form of execution of the President's instruction No. 3 of 2003 concerning national policies and strategies for the development of e-government. IT infrastructure itself is a foundation and framework that supports a system or organization. Excellent IT infrastructure support will contribute to accelerating the achievement of organizational goals. Evaluation of IT infrastructure readiness in Diskominfo in Padangsidimpuan City is done using the COBIT framework, by measuring the maturity level of IT infrastructure governance that refers to IT management goals number 10 and 11 in COBIT that are mapped on 13 COBIT process domains. The results of the evaluation of the level of achievement in each process there are eight processes at the completion of levels 1 and five are at the achievement of level 0. The level of hope for achieving the whole process is at level 3 and the gap consists of 2 degrees and 3 levels of achievement. The recommendations given in the form of a SWOT in this study aim to increase the level of maturity of IT infrastructure governance to support the implementation of e-government in the city government of Padangsidimpuan.
Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model Hidayat, Hidayat; Buono, Agus; Priandana, Karlisa; Wahjuni, Sri
Journal of Robotics and Control (JRC) Vol 4, No 5 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i5.18777

Abstract

Path planning is an essential algorithm in autonomous mobile robots, including agricultural robots, to find the shortest path and to avoid collisions with obstacles. Q-Learning algorithm is one of the reinforcement learning methods used for path planning. However, for multi-robot system, this algorithm tends to produce the same path for each robot. This research modifies the Q-Learning algorithm in order to produce path variations by utilizing the motivation model, i.e. achievement motivation, in which different motivation parameters will result in different optimum paths. The Motivated Q-Learning (MQL) algorithm proposed in this study was simulated in an area with three scenarios, i.e. without obstacles, uniform obstacles, and random obstacles. The results showed that, in the determined scenario, the MQL can produce 2 to 4 variations of optimum path without any potential of collisions (Jaccard similarity = 0%), in contrast to the Q-Learning algorithm that can only produce one optimum path variation. This result indicates that MQL can solve multi-robots path planning problems, especially when the number of robots is large, by reducing the possibility of collisions as well as decreasing the problem of queues. However, the average computational time of the MQL is slightly longer than that of the Q-Learning.
Pemilihan Algoritma Machine Learning untuk Perangkat dengan Komputasi Terbatas pada Deteksi Kematangan Buah Melon Berjala Zakiah, Rizqi Alifahasni; Wahjuni, Sri; Suwarno, Willy Bayuardi
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 10 No. 2 (2023)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.10.2.189-199

Abstract

Karakteristik yang diinginkan dari buah melon oleh konsumen meliputi rasa manis, ukuran buah sedang hingga besar, daging tebal dengan warna menarik dan tekstur renyah, serta masa simpan yang relatif lama. Memprediksi waktu panen menjadi hal yang penting terkait masa simpan buah dengan harapan buah melon dapat mencapai konsumen dalam keadaan dan kualitas terbaik, serta memberikan pengalaman yang memuaskan bagi konsumen. Saat ini, ketersediaan tenaga kerja pemanen dengan kemampuan yang mumpuni dalam menentukan buah melon yang akan dipanen menjadi salah satu kendala. Penggunaan robot pertanian dalam pemanenan buah melon merupakan salah satu solusi yang efektif dalam mengatasi permasalahan tersebut. Robot pertanian ini membutuhkan sistem yang mampu memprediksi stadia kematangan buah melon untuk dipanen. Penelitian ini fokus pada analisis perbandingan kinerja antara dua algoritma machine learning yaitu Support Vector Machine (SVM) dan Random Forest (RF), dengan tujuan menentukan pilihan optimal saat menerapkannya pada perangkat komputasi terbatas. SVM dan RF memiliki nilai akurasi tinggi, masing-masing 82% dan 73%. Keduanya juga memiliki waktu komputasi yang cepat, dengan rata-rata waktu inferensi masing-masing 2.14 detik dan 2.15 detik. Rata-rata penggunaan CPU pada algoritma SVM lebih tinggi dibandingkan dengan algoritma RF yaitu 17.80% sedangkan RF 15.48%. Meskipun SVM memiliki precision, recall, dan f-scored yang sedikit lebih tinggi dibandingkan dengan RF, namun setelah dilakukan independent 2-samples t-test terhadap inference time dan penggunaan CPU, didapatkan hasil bahwa tidak ada perbedaan nyata antara SVM dan RF. Keduanya sama-sama memiliki kinerja yang baik dan masuk ke dalam kategori good classification. Meninjau hal tersebut, algoritma RF menjadi algoritma yang disarankan karena memiliki tingkat akurasi yang baik, waktu komputasi cepat, dan penggunaan rata-rata sumberdaya CPU lebih rendah
Pengamatan Lingkungan Kandang Berbasis Internet of Things (Iot) pada Pertumbuhan Ayam Pedaging Komara N, Fatthurohman; Hidayati Soesanto, Iman Rahayu; Wahjuni, Sri
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 11 No. 1 (2024)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.11.1.50-63

Abstract

Internet of Things (IoT) merupakan sistem jaringan dengan sensor-sensor tertanam yang terhubung ke internet. Dengan penerapan IoT dalam peternakan ayam, diharapkan kegiatan peternakan ayam menjadi lebih efektif. Ayam broiler merupakan ayam ras yang digunakan untuk menghasilkan daging dan merupakan peralihan dari vertebrata (berdarah panas) ke avertebrata (berdarah dingin) dengan suhu pemeliharaan optimal 23–24 ºC, sedangkan kelembapan ideal berkisar antara 50%–70%. Suhu lingkungan di Indonesia yang beriklim tropis mencapai rata-rata 27–28 ºC, dapat menyebabkan stres pada ayam. Ciri-ciri heat stress pada ayam meliputi gangguan pertumbuhan, penurunan konsumsi pakan, kegelisahan, pengembangan sayap, peningkatan konsumsi air, hingga kematian. Penelitian ini bersifat deskriptif dan menggunakan metode pengamatan dengan satu perlakuan dan lima ulangan. Parameter yang diukur dalam penelitian ini meliputi suhu, kelembapan, pakan, dan bobot ayam. Parameter tersebut digunakan untuk menghitung Temperature-Humidity Index (THI), konsumsi pakan, pertambahan bobot badan, bobot badan akhir, dan Feed Conversion Ratio (FCR) dengan menggunakan metode regresi dan korelasi. Analisis regresi dalam penelitian ini menunjukkan bahwa terdapat pengaruh yang sangat signifikan antara variabel terikat (THI) terhadap variabel bebas (konsumsi pakan, FCR, PBB) dengan nilai P < 0.01, dan variabel terikat (THI) terhadap variabel bebas (mortalitas) memiliki pengaruh yang signifikan dengan nilai P < 0.05. Hasil ANOVA yang digunakan untuk mengetahui perbedaan antar kandang menunjukkan superskrip yang sama.
PENINGKATAN KESEJAHTERAAN MASYARAKAT DIMASA PANDEMI COVID 19 DENGAN PELATIHAN PENGEMASAN PRODUK LOLOH DAUN SEMBUNG (BLUMEA BALSAMIFERA) DI BANJAR DINAS APIT YEH KAJA, DESA MANGGIS KABUPATEN KARANGASEM Sri Wahjuni; Ida Bagus Putra Manuaba; Ni Made Puspawati; I. A Raka Astiti Asih
Jurnal Dharma Jnana Vol. 1 No. 3 (2021): JURNAL DHARMA JNANA
Publisher : Fakultas Ekonomi dan Bisnis Universitas Mahasaraswati Denpasar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (420.831 KB)

Abstract

Tanaman sembung (Blumea balsamifera) merupakan salah satu tanaman obat Indonesia yang daunnya secara tradisional telah dimanfaatkan oleh masyarakat Bali sebagai loloh (minuman herbal), untuk mengobati berbagai macam penyakit seperti batuk, pilek, demam, nyeri haid, maag, diare, rematik, diabetes, dan menjaga kesehatan jantung. Pengabdian ini dilakukan untuk memberikan pengetahuan melalui sosialisasi dan pelatihan kepada masyarakat PKK Banjar Apit Yeh Desa Manggis Karangasem tentang manfaat, pembuatan dan formulasi loloh sembung beserta kemasannya. Dalam pengabdian yang dilakukan, untuk menghasilkan satu botol loloh sembung dalam kemasan 300 mL, formulasi yang digunakan adalah 5 (lima) lembar daun sembung yang masih segar dan bersih terlebih dahulu dihaluskan dengan blender kemudian ditambahkan dengan tiga gelas air bersih (600 mL,) selanjutnya direbus sampai volume air tersisa 300 mL. Setelah air rebusan daun sembung dingin, kemudian disaring, dikemas ke dalam botol 300 mL, diberi label, dan siap untuk dipasarkan. Pemasaran dapat dilakukan melalui media sosial seperti Instagram, grup WhatsApp, dan Facebook.
Automatic detection of broiler’s feeding and aggressive behavior using you only look once algorithm Wahjuni, Sri; Wulandari, Wulandari; Eknanda, Rafael Tektano Grandiawan; Susanto, Iman Rahayu Hidayati; Akbar, Auriza Rahmad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp104-114

Abstract

The high market demand for broiler chickens requires that chicken farmers improve their production performance. Production cost and poultry welfare are important competitiveness aspects in the poultry industry. To optimize these aspects, chicken behavior such as feeding and aggression needs to be observed continuously. However, this is not practically done entirely by humans. Implementation of precision live stock farming with deep learning can provide continuous, real-time and automated decisions. In this study, the you only look once version 4 (YOLOv4) architecture is used to detect feeding and aggressive chicken behavior. The data used includes 1,045 feeding bounding boxes and 753 aggressive bounding boxes. The model training is performed using the k-fold cross validation method. The best mean average precision (mAP) values obtained were 99.98% for eating behavior and 99.4% for aggressive behavior.