Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : INDONESIAN JOURNAL OF PHARMACY

FORMULA OPTIMIZATION OF ORALLY DISINTEGRATING TABLET CONTAINING MELOXICAM NANOPARTICLES Winarti, Lina; Ameliana, Lidya; Nurahmanto, Dwi
Indonesian Journal of Pharmacy Vol 28 No 1, 2017
Publisher : Faculty of Pharmacy Universitas Gadjah Mada, Yogyakarta, Skip Utara, 55281, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (960.501 KB) | DOI: 10.14499/indonesianjpharm28iss1pp53

Abstract

Meloxicam is one of oxicams anti-inflamatory drugs that are effective to relieve toothaches, arthritis, dysmenorrhea, and fever. Meloxicam in this study was milled with High Energy Milling (HEM) method to obtain its nano size and then direct compression method was used to produce Orally Disintegrating Tablet (ODT). ODT is designed to be rapidly dissolved on the tongue within a minute. It can be administered without water or chewing and may improve the bioavailability and effectiveness of the drug, and increase the patient’s adherence. The present study aimed to understand the effects of Ac-Di-Sol and Kollidon CL as superdisintegrants, that were used separately or in combination, on the characteristics of nanoparticles meloxicam ODT. It was also to obtain the best proportion of combination between Ac-Di-Sol and Kollidon CL that can produce the optimum formula of meloxicam ODT. The effects of single or combined superdisintegrants were evaluated using Simplex Lattice Design (SLD). Ac-Di-Sol (X1) and Kollidon CL (X2) were the independent variables, while the dependent variables were friability (Y1), disintegrating time (Y2), wetting time (Y3), and percent meloxicam release after 60 seconds (Y4). Optimization of five nanoparticle meloxicam ODT formulas was conducted using Design Expert 7.1.5. The combination of Ac-Di-Sol 4.05mg (X1) and Kollidon CL 10.95mg (X2) in 150mg nanoparticles meloxicam ODT can produce optimal ODT characteristics. After verification there was no difference between predicted value and observed value with p value > 0.05.
NARINGENIN-LOADED CHITOSAN NANOPARTICLES FORMULATION, AND ITS IN VITRO EVALUATION AGAINST T47D BREAST CANCER CELL LINE Winarti, Lina; Ruma Kumala Sari, Lusia Oktora; Nugroho, Agung Endro
Indonesian Journal of Pharmacy Vol 26 No 3, 2015
Publisher : Faculty of Pharmacy Universitas Gadjah Mada, Yogyakarta, Skip Utara, 55281, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (15.106 KB) | DOI: 10.14499/indonesianjpharm25iss3pp147

Abstract

Naringenin (NAR), a natural flavonoid aglycone of naringin has been extensively investigated for its pharmacological activities, including anti-tumor effects. However, its poor bioavailability  has been identified as the single most important challenge in oral drug delivery. Based in this condition, it is used nanoencapsulation to increase the effectiveness of  NAR as anti-cancer. The objectives of this research are to develop the formulation of  NAR-loaded nanoparticles (NARNPs) as well as to evaluate its potential as anti-cancer against T47D breast cancer cells line. NARNPs is prepared through the method of ionic gelation, meanwhile its characteristic is evaluated through photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), fourier transform infra-red spectroscopy (FTIR), and different scanning calorimeter (DSC). The result of MTT test and cellular uptake indicate that NARNPs increase citotoxicity and internalization of NAR to the cells compared to the free NAR. The result of qualitative apoptosis study using fluorescence microscope indicates that both free NAR and NARNPs are able to induce apoptosis. It can be conclude that Chitosan  nanoparticles–TPP  conjugates  have  the  capability  to encapsulate naringenin hence increase the cellular uptake and cytotoxcicity of naringenin against T47D cell line. NARNPs also can induce the apoptosis effect.Keywords: NAR, Chitosan (CS), ionic gelation, nanoparticles
FORMULATION OF SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM OF BOVINE SERUM ALBUMIN USING HLB (HYDROPHILIC-LYPOPHILIC BALANCE) APPROACH Winarti, Lina
Indonesian Journal of Pharmacy Vol 27 No 3, 2016
Publisher : Faculty of Pharmacy Universitas Gadjah Mada, Yogyakarta, Skip Utara, 55281, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (681.569 KB) | DOI: 10.14499/indonesianjpharm27iss3pp117

Abstract

Self-Nanoemulsifying Drug Delivery System (SNEDDS) has potential to be developed for oral protein delivery because it is free from water, hence preserving the stability of protein, protecting protein from enzymatic degradation, and enhancing the protein permeability in the gastrointestinal tract (GIT). However, protein-based SNEDDS formulation is challenging due to low solubility property of protein in oil, which is towards zero. This present study aimed to obtain the most compatible SNEDDS system for protein using HLB approach. Bovine serum albumin (BSA) was used as a protein model in this study. A number of 78 formulae with HLB ranging between 11 and 15 were screened to acquire stable SNEDDS composition without the presence of phase separation. Of 13 stable formulae, two were selected (F30, F45) with HLB 15, and then loaded with BSA. Physical characteristics of both formulae were then evaluated and the results suggested that SNEDDS with single hydrophilic surfactant (F45) and HLB 15 was the best formula for protein template as the stability testing showed that phase separation and precipitation did not appear. It was robust to pH and dilution with percentage of transmittance of 96.40±1.05% and the droplet size of 180.9nm. F45 also had uniform distribution of droplets size since the polydispersity index was less than 0.1. The zeta potential of F45 was -0.12mv with loading efficiency 83.57±1.77%. The emulsifying time of F45 was > 2min due to the formation of crystalline gel that was difficult to disperse.
Formulation of nanoparticles from short chain chitosan as gene delivery system and transfection against T47D cell line Lina Winarti; Ronny Martien; Sismindari .
Indonesian Journal of Pharmacy Vol 22 No 3, 2011
Publisher : Faculty of Pharmacy Universitas Gadjah Mada, Yogyakarta, Skip Utara, 55281, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (315.858 KB) | DOI: 10.14499/indonesianjpharm0iss0pp204-211

Abstract

Recently numerous prototype DNA-based biopharmaceuticals can be used to  control  disease  progression  by  induction  and  inhibitin  the  overexpression  of genes.  Since  there  are  poor  cellular  uptake  and  rapid  in  vivo  degradation  of DNA-based  therapeutics  therefore  the  use  of  delivery  systems  to  facilitate cellular internalization and preserve their activity is necessary. Cationic polymers commonly used as carriers to delivery gene because of easy to form complexes and  higher  stability  compared  to  that  lipoplexs.  Chitosan,  a  cationic,  are polymer most widely used in gene delivery systems because of the low toxicity, and biocompatible. The aim of this study was to formulate nanoparticles of short chain  chitosan-pEGFP-C1  and  short  chain  chitosan/TPP-pEGFP-C1  by coaservation  complex  method.  Stability  test  of  the  formula  was  performed  by incubating the nanoparticles complex with DNase I and Artificial Intestinal Fluid. Cytotoxicity  and transfection  studies  were  evaluated  against  T47D  cell line.  The diameter  of  Chitosan-pEGFP-C1  and  chitosan/TPP-pEGFP-C1  nanoparticles  were on the range of 56–282.8 nm. The zeta potential wasdetermined to be +14.03 - +16.6  mV.  Stability  studies  showed  that  chitosan-pEGFP-C1  and  chitosan/TPPpEGFP-C1  nanoparticles  were  stable,  undegradable  by  DNase  I  and  artificial intestinal fluid. Cytotoxic Assay of Chitosan-pEGFP-C1 and  chitosan/TPP-pEGFPC1  nanoparticles  (pH  4.0)  showed  that  the  viability  of cell  was  >  90%  for  all formulas.  EGFP-C1  plasmid  gene  delivered  by  chitosan  nanoparticles  can  be expressed  in  T47D  cell  culture.  According  to  these  results  chitosan  and chitosan/TPP  nanoparticles  had  potentially  to  be  used  as  a  non-viral  vector system delivery for gene therapy.Key words:Chitosan, Nanoparticles, Plasmid EGFP-C1, Cell culture T47D 
Formulation of Insulin Self Nanoemulsifying Drug Delivery System and Its In Vitro-In Vivo Study Lina Winarti; Suwaldi Suwaldi; Ronny Martien; Lukman Hakim
Indonesian Journal of Pharmacy Vol 29 No 3, 2018
Publisher : Faculty of Pharmacy Universitas Gadjah Mada, Yogyakarta, Skip Utara, 55281, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1129.358 KB) | DOI: 10.14499/indonesianjpharm29iss3pp157

Abstract

Particulate delivery system can be used for improving the efficacy of protein and peptide drug. In addition to a polymer-based particulate delivery system, self-nanoemulsifying drug delivery system (SNEDDS), a lipid-based delivery system, is currently developed for either less water-soluble or soluble drugs. This study aims to design SNEDDS for oral insulin administration and its in vitro-in vivo study. The SNEDDS template was designed using D-optimal mixture design and was analyzed using software Design Expert 7.1.5. The obtained optimum template was loaded with insulin and evaluated for its transmittance percentage, emulsification time, particle size, zeta potential, stability, the amount of insulin in vitro diffused across rat intestine, and insulin serum concentration after oral administration. The study results revealed that the optimum template of SNEDDS formula consisted of 10% (w/w) Miglyol 812N, 65% (w/w) Tween 80, and 25% (w/w) propylene glycol. These optimum template then was loaded with insulin and characterized. SNEDDS insulin has particle size of 12.0±1.7 nm, zeta potential of +0.16mV, transmittance of >90%, and emulsification time of < 60 seconds. The stability study showed that SNEDDS insulin was stable from both precipitation and phase separation. The amount of insulin transported from SNEDDS formula in vitro was 32.45±2.03% and non-SNEDDS formula was 10.44±5.04%. In vivo study of SNEDDS insulin produced a significantly increased Cmax, AUC, and F value than insulin non SNEDDS (p < 0.05). In brief, SNEDDS formulation in this study is a promising approach to increase the effectiveness of oral insulin. Insulin is better given orally in SNEDDS formulation than in non SNEDDS formulation.