Claim Missing Document
Check
Articles

ANALISIS SENTIMEN PT TIKI JALUR NUGRAHA EKAKURIR (PT TIKI JNE) PADA MEDIA SOSIAL TWITTER MENGGUNAKAN MODEL FEED FORWARD NEURAL NETWORK Salma Farah Aliyah; Hasbi Yasin; Suparti Suparti; Budi Warsito; Tatik Widiharih
Jurnal Statistika Universitas Muhammadiyah Semarang Vol 8, No 2 (2020): Jurnal Statistika Universitas Muhammadiyah Semarang
Publisher : Department Statistics, Faculty Mathematics and Natural Science, UNIMUS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jsunimus.8.2.2020.103-113

Abstract

In the 2000s until now, e-commerce systems have continued to develop throughout the world and even in Indonesia. PT Tiki Jalur Nugraha Ekakurir (PT Tiki JNE) is a freight forwarding company that provides convenience for the public in carrying out online shopping activities, and shipping other goods. The large volume of shipments makes PT Tiki JNE have several problems in service that have led to several kinds of responses from users. Sentiment analysis on Twitter social media can be an option to see how PT Tiki JNE’s users respond to services that have been provided. These responses are classified into positive sentiments and negative sentiments. In this research data processing is performed using text mining as the initial source of numerical data from document data which will later be classified using the Artificial Neural Network model with the Resilient Backpropagation algorithm. Data labeling is done manually and sentiment scoring. The test results show that the best model obtained is FFNN 867-7-1 by using the evaluation model 10-Fold Cross Validation to get an overall accuracy performance of 80.27%, kappa accuracy of 39.13%, precision of 69.04%, recall of 70.56%, and f-measure of 69.8% which can be interpreted that the model used is quite good. Analysis of the results using wordcloud shows the tendency of opinion sentiment categories depending on the words used in the tweet.
ROBUST GEOGRAPHICALLY WEIGHTED REGRESSION DENGAN METODE MUTLAK SIMPANGAN TERKECIL PADA PEMODELAN KEJADIAN DIARE DI KOTA SEMARANG Ika Chandra Nurhayati; Agus Rusgiyono; Hasbi Yasin
Jurnal Gaussian Vol 7, No 2 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.2 KB) | DOI: 10.14710/j.gauss.v7i2.26646

Abstract

Diarrhea is one of many health issues in developing country like Indonesia, because the sickness and the death number are still high. According to health profile of Semarang City, the people who suffer from diarrhea from 2010-2015 are decreasing. The lowest point happened at the year 2013 with the total case of 38.001, however there are an increasing number from 2014-2015. The distribution data of diarrhea is a spatial data. The differences between environment and sanitation could cause spatial heterogeneity. The spatial heterogeneity could cause the produced variant value no longer constant, but instead it is different on each region. Therefore, regression model that involves the effects of spatial heterogeneity is needed, which are Geographically Weighted Regression (GWR) that is built by Weighted Least Square (WLS) adjuster. Although, GWR parameter adjuster that used WLS is very sensitive with the existence of outliers. The existence of the outlier in the data will create a huge residual. Thus, more robust method is needed, which is Least Absolute Deviation (LAD) methods in order to estimate the parameter on model GWR. This model is called Robust GWR (RGWR). The result shows that the model events of diarrhea on each region in Semarang City are different. Furthermore, the model events of diarrhea with RGWR model generate MAPE 16,3396% which means the performance of RGWR is formed well. Keyword: Diarrhea, Robust, Geographically Weighted Regression, Least Absolute Deviation
PENERAPAN METODE ORDINARY KRIGING PADA PENDUGAAN KADAR NO2 DI UDARA (Studi Kasus: Pencemaran Udara di Kota Semarang) Gera Rozalia; Hasbi Yasin; Dwi Ispriyanti
Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (796.326 KB) | DOI: 10.14710/j.gauss.v5i1.11034

Abstract

Air pollution must be addressed. Nitrogen Dioxide is one of the important factors in air pollution. To determine concentration level of the pollutant “Badan Lingkungan Hidup Kota Semarang” already take measurements  at several  points.  However,  because of  blocked  considerable cost, is  not  much  point to do measurements. In this study, will be used Ordinary Kriging method to estimate at some points in Semarang. In  this  methode will compare the value of  the eksperimental semivariogram  with  some theoretical semivariogram models (spherical, eksponensial, and gaussian) to get the best model that will be used in the estimation. In this study, estimate the concentration of Nitrogen Dioxide in the air in a number of village in Semarang. Based on analysis we found the best model is spherical model with Nitrogen Dioxide produces estimates is the highest in Sub Gebangsari and Nitrogen Dioxide lowest in Sub Patemon. Keywords: Ordinary Kriging, Semivariogram, Nitrogen Dioxide.
ANALISIS SENTIMEN REVIEW APLIKASI CRYPTOCURRENCY MENGGUNAKAN ALGORITMA MAXIMUM ENTROPY DENGAN METODE PEMBOBOTAN TF, TF-IDF DAN BINARY Fadhilla Atansa Tamardina; Hasbi Yasin; Dwi Ispriyanti
Jurnal Gaussian Vol 11, No 1 (2022): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v11i1.34004

Abstract

Pandemi COVID-19 yang belum berhenti menyebabkan kondisi ekonomi Indonesia kian memburuk. Masyarakat yang terkena dampak pemotongan upah akibat pandemi harus mencari cara untuk mendapatkan pendapatan pasif. Salah satu cara untuk mendapatkan hal tersebut adalah berinvestasi. Cryptocurrency adalah salah satu instrumen investasi berbasis aplikasi yang memiliki return tinggi. Aplikasi Pintu  adalah aplikasi pertama yang menyediakan fasilitas mobile apps  pada penggunanya. Aplikasi yang dirilis pada tahun 2020 ini sudah memiliki banyak ulasan yang diberikan oleh penggunanya. Ulasan ini dibutuhkan untuk mengetahui apakah ulasan yang diberikan bersifat positif atau negatif. Analisis sentimen pada aplikasi Pintu dipilih untuk melihat sentimen pengguna yang akan dibagi menjadi dua kelas sentimen yaitu positif dan negatif. Klasifikasi dilakukan dengan algoritma Maximum Entropy dengan perbandingan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary. Model klasifikasi terbaik dilihat berdasarkan nilai akurasi yang dievaluasi dengan 5-Fold Cross Validation. Hasil klasifikasi model Maximum Entropy dengan Binary memiliki tingkat akurasi sebesar 83,21% sedangkan hasil klasifikasi model Maximum Entropy dengan Term Frequency hanya sebesar 83,01% dan model Maximum Entropy dengan Term Frequency-Inverse Document Frequency hanya sebesar 83,20%. Hal ini menunjukkan bahwa tidak terdapat perbedaan yang signifikan pada model algoritma Maximum Entropy dengan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary. Keywords: Cryptocurrency, Binary, Term Frequency, Term Frequency-Inverse Document Frequency, Maximum Entropy
PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN METODE RADIAL BASIS FUNCTION NEURAL NETWORK MENGGUNAKAN GUI MATLAB Rizki Brendita Br Tarigan; Hasbi Yasin; Alan Prahutama
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28872

Abstract

Capital market Indonesia is one of the important factors in the development of the national economy, proved to have many industries and companies that use these institutions as a medium to absorb investment to strengthen its financial position. The recent years, Jakarta Composite Index (JCI) in Capital Market tend to strengthen. JCI data are the time series data obtained from the past to predict the future with caracteristics of JCI data are non stationary and non linier. Neural network is a computational method that imitate the biological neural network. There are several types of methods that can be used in neural network that is: Radial Basis Function Neural Network (RBFNN) Generalized Regression Neural Network (GRNN), dan Probabilistic Neural Network (PNN). Model of Radial Basis Function Neural Network is suitable for time series data. This model has a network architecture in the form of input layer, hidden layer and output layer. This research is done with the help of GUI as a computation tool. The results of analysis by using GUI conducted on the size sample of data as much as 1211 taken as 100 the data thus obtained value of 2315,6 MSE training and training MAPE value of 0,72%, while for the testing of 28886,7 MSE and MAPE testing value is 0,70%. Based on the results of forecasting, JCI values on January 02, 2018 until January 08, 2018 at 6499,922 every day. Keywords: Radial Basis Function Neural Network (RBFNN), Jakarta Composite Index (JCI), MSE, MAPE, Time Series, GUI.
PEMODELAN INDEKS PEMBANGUNAN MANUSIA DI JAWA TENGAH DENGAN REGRESI KOMPONEN UTAMA ROBUST Tsania Faizia; Alan Prahutama; Hasbi Yasin
Jurnal Gaussian Vol 8, No 2 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (853.178 KB) | DOI: 10.14710/j.gauss.v8i2.26670

Abstract

Robust principal component regression is development of principal component regression that applies robust method at principal component analysis and principal component regression analysis. Robust principal component regression does not only overcome multicollinearity problems, but also overcomes outlier problems. The robust methods used in this research are Minimum Covariance Determinant (MCD) that is applied when doing principal component analysis and Least Trimmed Squares (LTS) that is applied when doing principal component regression analysis. The case study in this research is Human Development Index (HDI) in Central Java in 2017 which is influenced by labor force participation rates, school enrollment rates, percentage of poor population, population aged 15 years and over who are employed, health facilities, gross enrollment rates, and net enrollment rates. The model of HDI in Central Java in 2017 using robust principal component regression MCD-LTS provides the most effective result for handling multicollinearity and outliers with Adjusted R2 value of 0.6913 and RSE value of 0.469. Keywords: Robust Principal Component Regression, Multicollinearity, Outliers, Minimum Covariance Determinant (MCD), Least Trimmed Squares (LTS), Human Development Index (HDI).
PERAMALAN HARGA SAHAM DENGAN METODE LOGISTIC SMOOTH TRANSITION AUTOREGRESSIVE (LSTAR) (Studi Kasus pada Harga Saham Mingguan PT. Bank Mandiri Tbk Periode 03 Januari 2011 sampai 24 Desember 2018) Maria Odelia; Di Asih I Maruddani; Hasbi Yasin
Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i4.29403

Abstract

Series such as financial and economic data do not always form a linear model, so a nonlinear model is needed. One of the popular nonlinear models is the Smooth Transition Autoregressive (STAR). STAR has two possible suitable transition function such as logistic and exponential that need to be test to find the appropriate transition function. The purpose of writing this thesis is to determine the LSTAR model, then use the model to predict the stock price of PT Bank Mandiri. This study uses the data of the weekly stock price of PT Bank Mandiri from the period of January 3, 2011 to December 24, 2018 as insample data and the period of January 1, 2019 to December 30, 2019 as outsample data. The research procedure begins with modeling the data with the Autoregressive (AR) process, testing the linearity of the data, modeling with LSTAR, forecasting, and finally evaluating the results of forecasting. Evaluating the results of the forecasting of the weekly share price of PT Bank Mandiri with the STAR model results in the best nonlinear model LSTAR (1,1). This model produces an highly accurate forecasting result with a value of symmetric Mean Square Error (sMAPE) to be 5.12%.Keywords: Nonlinear, Time Series, STAR, LSTAR.
IMPLEMENTASI R-SHINY UNTUK ANALISIS BIPLOT KOMPONEN UTAMA (Studi Kasus: Penggunaan Alat Kontrasepsi pada Peserta Aktif KB di Provinsi Jawa Tengah Tahun 2019) Andreanto Andreanto; Hasbi Yasin; Agus Rusgiyono
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.33097

Abstract

The population problem is a fairly complex and complicated problem. Therefore, Indonesia seeks to control the birth rate with the Family Planning program. The implementation of this program can be evaluated through statistical data. The statistical analysis used is biplot principal component analysis to see the relationship between districts/cities in choosing the contraceptive device/method used, the variance of each contraceptive device/method, the correlation between contraceptive devices/methods, and the superiority value of the contraceptive device/method in the population. each district/city. The problem with performing the analysis is the limitations of easy-to-use open source software. As with R, users must understand writing code to perform data analysis. Therefore, to perform a biplot analysis of the principal components, an RShiny application has been created using RStudio. The R-Shiny that has been made has many  advantages,  including  complete  results  which  include  data  display,  data transformation, SVD matrix, to graphs along with plot graph interpretation. The results of the principal component biplot analysis using R-Shiny with α =1 have the advantage of a good principal component biplot, which is 95.63%. This shows that the biplot interpretation of the main components produced can be explained well the relationship between the district/city and the contraceptive methods/devices used. 
ROBUST SPATIAL AUTOREGRESSIVE UNTUK PEMODELAN ANGKA HARAPAN HIDUP PROVINSI JAWA TIMUR Hidayatul Musyarofah; Hasbi Yasin; Tarno Tarno
Jurnal Gaussian Vol 9, No 1 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1165.264 KB) | DOI: 10.14710/j.gauss.v9i1.27521

Abstract

Spatial regression analysis is regression method used for type of data has a spatial effect. Spatial regression showing the presence of spatial effects on the response variable (Y) is a Spatial Autoregressive (SAR). Outlier often found in research spatial data. The outlier is called the spatial outliers. The analysis can be used to handle outliers in general is Robust Regression. There are several estimator that can be used in which the estimator Robust Regression S, M, MM and LTS. Meanwhile, Robust Regression were used to handle spatial outlier is a combination of SAR and Regression Robust method to form a new method that is Robust Spatial Autoregressive (Robust SAR). Type estimator used in this study is the S-Estimator. This study was conducted to determine the best model on a case study Life Expectancy of East Java Province. The best model is analyzed by comparing the methods of SAR and SAR Robust method. Based on the analysis results obtained MSE and Adjusted R2 values for the SAR method are 1.7521 and 55.54% while for the Robust SAR method are 0.7456 and 62.30%. The Robust SAR model has a lower MSE value and a higher Adjusted R2 when compared to the SAR model. Thus the best model for modeling the life expectancy in East Java is Robust SAR models.Keywords:Spatial Autoregressive (SAR), Robust SAR, Life expectancy
GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION UNTUK MENANGANI OVERDISPERSI PADA JUMLAH PENDUDUK MISKIN Nova Delvia; Mustafid Mustafid; Hasbi Yasin
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.33106

Abstract

Poverty is a condition that is often associated with needs, difficulties an deficiencies in various life circumstances. The number of poor people in Indonesia increase in 2020. This research focus on modelling the number of poor people in Indonesia using Geographically Weighted Negative Binomial Regression (GWNBR) method. The number of poor people is count data, so analysis used to model the count data is poisson regression.  If there is overdispersion, it can be overcome using negative binomial regression. Meanwhile to see the spatial effect, we can use the Geographically Weighted Negative Binomial Regression method. GWNBR uses a adaptive bisquare kernel for weighting function. GWNBR is better at modelling the number of poor people because it has the smallest AIC value than poisson regression and negative binomial regression. While the GWNBR method obtained 13 groups of province based on significant variables.      
Co-Authors Abdul Hoyyi Achmad Choiruddin Adi Waridi Basyiruddin Adi Waridi Basyirudin Arifin Agus Rusgiyono Ajeng Arum Sari Alan Prahutama Alvita Rachma Devi Amanda Lucky Berlian Andreanto Andreanto Anggun Perdana Aji Pangesti Arief Rachman Hakim Arief Rachman Hakim Arumningtyas, Felinda Baluk, Andreas Pedo Bens Pardamean Budi Warsito Budi Warsito Danang Chandra Pradana, Danang Chandra Dani Al Mahkya Darwanto Darwanto Devi Wijayanti Dewi Setya Kusumawardani Dharmawan, Bagus Dwiky Dhea Kurnia Mubyarjati Di Asih I Maruddani Di Asih I Maruddani Di Asih I Maruddani Diah Safitri Dwi Hasti Ratnasari Dwi Ispriyanti Eko Siswanto Fadhilla Atansa Tamardina Fiqria Devi Ariyani Gera Rozalia Hanien Nia H Shega Hari Susanta Nugraha Hendrian, Jody Hidayatul Musyarofah Hindun Habibatul Mubaroroh Ika Chandra Nurhayati Inas Hasimah Inayati, Syarifah Indah Suryani Innosensia Adella Intan Monica Hanmastiana Isna Wulandari Ispriyansti, Dwi Johanes Roisa Prabowo Kadi Mey Ismail Kurniawan, Isma Dwi Lutfia Septiningrum Maghfiroh Hadadiah Mukrom Maria Odelia Mas'ad, Mas'ad Maulana Taufan Permana Mega Fitria Andriyani Meilia Kusumawardani, Meilia Moch. Abdul Mukid Mochammad Iffan Zulfiandri MUHAMMAD HARIS Muhammad Mujahid Muhammad Tahmid Muryanto Muryanto Muryanto, Muryanto Mustafid Mustafid Mutiara, Dinar Nova Delvia Nur Azizah Nur Indah Yuli Astuti, Nur Indah Yuli Pandu Anggara Purhadi Purhadi Puspita Kartikasari Ragil Saputra Rahmasari Nur Azizah Reza Dwi Fitriani Rezzy Eko Caraka Riama Oktaviani Samosir, Riama Oktaviani Rifki Adi Pamungkas, Rifki Adi Rita Rahmawati Rita Rahmawati Riza Fahlevi Rizki Brendita Br Tarigan Rose Debora Julianisa, Rose Debora Rukun Santoso Rung Ching Chen Saepudin, Yunus Sakhinah Abu Bakar Salma Farah Aliyah Sari, Ajeng Arum Sari, Indri Puspita Satriyo Adhy Setiawan Setiawan Setyoko Prismanu Ramadhan Siahaan, Rina Br Siska Alvitiani Siti Maulina Meutuah Sri Endah Moelya Artha Sudarno Sudarno Sudarno Sudarno Sugito Sugito - Sugito Sugito Suhartono Suhartono Suparti Suparti Tarno Tarno Tarno Tarno Tatik Widiharih Tiani Wahyu Utami Tsania Faizia Ubudia Hiliaily Chairunnnisa Via Risqiyanti Wahyu Sabtika Wawan Sugiarto, Wawan Wulandari, Heni Dwi Wulandari, Isna Youngjo Lee Yuciana Wilandari Yudha Subakti, Yudha Zulfa Wahyu Mardika, Zulfa Wahyu