Claim Missing Document
Check
Articles

Pengelompokan Hasil Evaluasi Pembelajaran Metode Hafalan Al Qur’an Tawazun Menggunakan Metode K-Means Khalili Rahmatiningsih, Ajeng; Nilogiri, Agung; Eko Wardoyo, Ari
Jurnal Indonesia Sosial Teknologi Vol. 3 No. 08 (2022): Jurnal Indonesia Sosial Teknologi
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1884.241 KB) | DOI: 10.59141/jist.v3i08.480

Abstract

The method of memorizing the Qur'an Tawazun is a method that maximizes the use of the right brain and left brain, allowing a person to memorize, understand, and believe. Each category has several assessment points as a benchmark for the ability of students, which are used to overcome the level of failure of students in each category of learning the method of memorizing the Qur'an tawazun. The results of the evaluation of the learning of the tahfidz Islamic boarding school Daarul Huffadz Indonesia in 2020 were felt to be less than optimal, because the learning process was carried out simultaneously. This can be seen from the difference in scores that are quite different in each category of assessment. Based on the previous problem, it is necessary to group the results of the evaluation of learning the Qur'an memorization method. The goal is that every student gets maximum treatment and provides convenience for the institution, as well as teaching staff to carry out learning. The purpose of this study is to determine the optimum number of clusters as well as members of each cluster by measuring cluster performance using the Davies Bouldin Index (DBI) method and implementing the K-Means algorithm. The K-Means algorithm is a non-hierarchical data clustering method that is able to group large amounts of data, relatively quickly, and efficiently. This study uses 401 observational data and 12 attributes. From the calculation results, the optimal number of clusters lies in 2 clusters, with a Davies-Bouldin Index (DBI) value of 1.439. There are 26 members of cluster 1, and 375 members of cluster 2.
IMPLEMENTASI CONVOLUTION NEURAL NETWORK (CNN) UNTUK KLASIFIKASI PADA CITRA IKAN CUPANG HIAS Setyawan, Wahyu Dwi; Nilogiri, Agung; A’yun, Qurrota
JTIK (Jurnal Teknik Informatika Kaputama) Vol. 7 No. 1 (2023): Volume 7, Nomor 1, Januari 2023
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jtik.v7i1.45

Abstract

Ikan cupang adalah salah satu jenis ikan air tawar yang habitatnya tersebar disebagain negara Asia Tenggara. Ikan cupang memiliki nilai ekonomis tinggi, di masa pandemi bisnis ikan cupang hias biasa dilakukan secara online shop melalui Facebook, Instagram. Bagi orang yang masih awam dengan ikan cupang tentunya akan sulit untuk mengenali ciri bentuk fisik dari jenis ikan cupang, karena pada dasarnya jenis-jenis ikan cupang hias memiliki kemiripan pada struktur tubuh, srip dan ekornya. Oleh karena itu, dibutuhkan sebuah sistem untuk membantu orang awam dalam mengenali jenis ikan cupang hias. Pada penelitian ini dibangun sebuah sistem untuk mengklasifikasikan jenis ikan cupang hias, yaitu: Plakat, Crowntail, Halfmoon, Double tail dan Halfmoon plakat(HMPK) jantan dan betina dengan memanfaatkan pemodelan Convolutional Neural Network (CNN). CNN merupakan algoritma yang dikembangkan dari MultiLayer Perceptron yang dapat mengekstraksi citra dengan detail. Model CNN dirancang menggunakan arsitektur VGG16 yang dimodifikasi pada bagian Fully-connected layers. Berdasarkan dari hasil pengujian model CNN menggunakan data test sebanyak 180 citra mendapatkan akurasi sebesar 78,33%.