Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Embedded system for upper-limb exoskeleton based on electromyography control Triwiyanto Triwiyanto; I Putu Alit Pawana; Bambang Guruh Irianto; Tri Bowo Indrato; I Dewa Gede Hari Wisana
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.11670

Abstract

A major problem in an exoskeleton based on electromyography (EMG) control with pattern recognition-based is the need for more time to train and to calibrate the system in order able to adapt for different subjects and variable. Unfortunately, the implementation of the joint prediction on an embedded system for the exoskeleton based on the EMG control with non-pattern recognition-based is very rare. Therefore, this study presents an implementation of elbow-joint angle prediction on an embedded system to control an upper limb exoskeleton based on the EMG signal. The architecture of the system consisted of a bio-amplifier, an embedded ARMSTM32F429 microcontroller, and an exoskeleton unit driven by a servo motor. The elbow joint angle was predicted based on the EMG signal that is generated from biceps. The predicted angle was obtained by extracting the EMG signal using a zero-crossing feature and filtering the EMG feature using a Butterworth low pass filter. This study found that the range of root mean square error and correlation coefficients are 8°-16° and 0.94-0.99, respectively which suggest that the predicted angle is close to the desired angle and there is a high relationship between the predicted angle and the desired angle.
A low-cost electro-cardiograph machine equipped with sensitivity and paper speed option Bambang Guruh Irianto; Budhiaji Budhiaji; Dwi Herry Andayani
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 3: June 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i3.8558

Abstract

The price of electrocardiograph (ECG) machine on the market is very high. Currently, the technology used is still very complicated and ineffective, and the ECG machine cannot be connected to other devices. A new development of a low-cost ECG machine with a customized design was needed to integrate the machine with other devices. Therefore, the purpose of this study is to develop a low-cost ECG machine which can be connected to other devices and equipped with sensitivity and paper speed setting. So that portable ECG machines can be produced and used at small clinics in the society. In this study, the main controller of the 12 channels ECG machines was supported by ATMEGA16 microcontroller, that is available on the market at low prices. The main part of the ECG amplifier is built using a high common mode rejection ratio (CMRR) instrumentation amplifier (AD620) and a bandpass filter which the cutoff frequency for highpass filter and lowpass filter are 0.05 Hz and 100 Hz, respectively. In order to complement the previous study, some features were introduced such as selectivity and motor speed option. In this study, 10 participants are involved for data acquisition,and an ECG phantom was used to calibrate the machine. The performance of the ECG machine was evaluated using standard measurement namely relative percentage error (% error) and uncertainty (UA). The result shows that %error from all of the feature is less than 2% and the UA is 0.0 which shows that the ECG machine is feasible for diagnostic purposes.