Claim Missing Document
Check
Articles

Found 23 Documents
Search

STRATEGI BERINOVASI BIDANG PENELITIAN DAN PENGEMBANGAN BADAN PERENCANAAN DAERAH UNTUK MENDUKUNG SMART CITY KOTA YOGYAKARTA Ibnu Sani; Achmad Djunaedi
Jurnal Desiminasi Teknologi Volume 11 No.2 Juli 2023
Publisher : Fakultas Teknik Universitas Tridinanti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52333/destek.v11i2.128

Abstract

Penelitian ini mengusulkan bagaimana strategi berinovasi untuk mendukung pengembangan smart city oleh bidang penelitian dan pengembangan di kota Yogyakarta. Strategi tersebut disusun dengan metode pemodelan konseptual yang mana diawali dengan menggambarkan bagaimana kondisi Litbang saat ini yang belum mampu berinovasi secara optimal dengan keterbatasan bentuk struktur organisasi yang masih sebatas bidang dari Badan Induk Badan Perencanaan dan Pembangunan Daerah, yang berdampak kepada kapasitas organisasi. Berangkat dari kondisi tersebut, selanjutnya strategi yang dibahas dengan metode forum group dicussion dengan muatan pertama a) memperkuat kapasitas organisasi dengan tetap dengan skala bidang, namun diperkuat dengan membentuk tim inovasi atau menaikkan status organisasi dari bidang menjadi badan riset inovasi daerah b) mengembangkan proses inovasi kolaboratif antara Litbang dan Dinas Kominfo dan Penyandian dan ketiga 3) perbaikan permasalahan dasar organisasi dalam hal ini a) memperjelas lingkup kewenangan tugas pokok dan fungsi pegawai b) menambah tenaga fungsional peneliti dan c) mengembangkan instrumen pendanaan alternatif selain dari pada pendanaan dari pemerintah.
Penilaian Keselamatan Kontruksi pada Pekerjaan Tunnelling dengan Memanfaatkan Foto Kontruksi Proyek Pembangunan Bendungan Manikin Koko Heru Satmoko; Achmad Djunaedi; Fitri Nugraheni
Ocean Engineering : Jurnal Ilmu Teknik dan Teknologi Maritim Vol. 2 No. 3 (2023): September : Jurnal Ilmu Teknik dan Teknologi Maritim
Publisher : Fakultas Teknik Universitas Maritim AMNI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58192/ocean.v2i3.1161

Abstract

Tunneling construction is important to get more attention because considering the magnitude of the risks from this work such as the instability of the carrying capacity of the soil around the construction which can cause collapse during dredging or installation of tunneling walls, or and other problems such as lack of oxygen intake for workers who are carrying out tunneling excavations , the presence of toxic and flammable gases, or falling objects that can result in minor accidents or even death. The purpose of this study is to make a visual assessment through certain media (photos/videos) that can be done quickly regarding the existing conditions of the environment/work, whether the work carried out meets work safety standards, work safety regulations and so on. Rapid assessment can assume that what happened in the field at that time was a reflection of previous work. From the results of the study there were 58 variables which were divided into 4 main variables which were assessed based on the WBS and 26 photos of the environment of the Manikin Dam Tunneling development project taken from several sides. Calculations were made using the results of data from 6 informants, resulting in a P(H | Ecomb) value of 0.932 or a probability of 93.2%, which means that the tunnel work according to the 6 informants was carried out safely. The final value obtained from the analysis is almost close to 1 and all the results of the analysis from the 6 informants are more than 67%.
Socio-user Context Aware-Based Recommender System: Context Suggestions for A Better Tourism Recommendation Kusuma Adi Achmad; Lukito Edi Nugroho; Achmad Djunaedi; Widyawan
International Journal on Information and Communication Technology (IJoICT) Vol. 9 No. 2 (2023): Vol.9 No. 2 Dec 2023
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v9i2.858

Abstract

The existing tourism recommender system model is mostly predictive analytics for destination recommendations (item recommendation). Limited research has been conducted in the discussion of a recommender system model, particularly context suggestion. Thus, it is necessary to develop a recommender system model not only to predict tourism destinations but also to suggest contexts appropriate for tourist preferences (context suggestions). A deep learning method was used to create a model of the socio-user context aware-based recommender system for context suggestions. The attribute used as a label to suggest context was uHijos, uCuisine, uAmbience, and uTransport. The accuracy of the socio-user context aware-based recommender system in suggesting the context of uHijos, uAmbience, and uTransport was 100% with an error rate of 0%. It was found that only the level of recognition of the model in suggesting uCuisine was less accurate (below 30%) with a classification error for more than 70%. Performance evaluation of the socio-user model context-based recommender system was considered efficient, particularly for the evaluation of the level of accuracy, completeness (recall/sensitivity), precision, and a harmonic average of precision and recall (F-score), mainly for label/context of uHijos, uAmbience, and uTransport.