Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse: Comparison of Support Vector Machine and Naïve Bayes Algorithms for Sentiment Analysis of the Metaverse Dea Nurmastin Novianti; Diqy Fakhrun Shiddieq; Fikri Fahru Roji; Wati Susilawati
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 1 (2024): MALCOM January 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i1.1061

Abstract

Metaverse telah mencuri perhatian dunia karena kemampuannya untuk menggabungkan dunia nyata dan dunia virtual. Minat terhadap metaverse semakin meningkat seiring dengan dampak pandemi COVID-19 dan proyek pembangunan Ibu  Kota Nusantara (IKN), serta pertumbuhan penggunaan platform digital. Perbincangan isu metaverse semakin meroket naik setelah perusahaan Facebook merubah namanya menjadi Meta. Studi ini bertujuan untuk membandingkan  akurasi tertinggi antara metode algoritma Naïve Bayes dengan SVM  dalam menganalisis respons masyarakat terhadap metaverse. Studi ini menggunakan metode sentiment analisis. Penggunaan dua algoritma menjadi keterbaruan penelitian. Studi kali ini  menggunakan data yang diambil dari Twitter (x) dan disimulasikan menggunakan sentiment analisis dari algoritma SVM dan  algoritma Naïve Bayes. Berdasarkan penelitian, ditemukan bahwa akurasi algoritma SVM mencapai 90,32% presisi sebesar 0,90 dan recall sebesar 0,86, sedangkan algoritma Naïve Bayes mencapai 84,23% presisi sebesar 0,87 dan recall sebesar 084. Dengan adanya penelitian ini dapat memberikan wawasan terhadap tren metaverse, serta membandingkan hasil akurasi tertinggi antara  dua algoritma.  
Pemodelan Topik pada Media Berita Online Menggunakan Latent Dirichlet Allocation (Studi Kasus Merek Somethinc): Topic Modeling on Online News Media Using Latent Diriclet Allocation (Case Study Somethinc Brand) Evi Puspita; Diqy Fakhrun Shiddieq; Fikri Fahru Roji
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1204

Abstract

Somethinc merupakan salah satu merek kosmetik lokal di Indonesia yang aktif memanfaatkan media, seperti berita online untuk menyampaikan informasi terkini seputar merek. Dari banyaknya berita online mengenai merek Somethinc, sering kali topik dan tren yang sedang dibahas tidak menggambarkan informasi secara keseluruhan. Untuk menganalisis topik yang paling sering dibahas dalam berita online mengenai merek Somethinc, peneliti menggunakan metode topic modeling, yaitu Latent Dirichlet Allocation, yang dinilai lebih unggul dalam menghasilkan topik secara terstruktur. Penelitian ini memanfaatkan nilai coherence untuk menganalisis dan mengevaluasi jumlah topik terbaik, selanjutnya pendekatan human judgement digunakan untuk menginterpretasikan topik. Hasil analisis kemudian divisualisasikan secara interaktif menggunakan pyLDAvis, untuk mengetahui persebaran kata dari setiap topik. Berdasarkan hasil penelitian, jumlah topik terbaik terdapat pada topik 6 dengan nilai coherence sebesar 0.404. Keenam topik tersebut diinterpretasikan berdasarkan pendekatan human judgement, menghasilkan topik-topik meliputi produk skincare untuk kulit berjerawat, penghargaan brand kecantikan terbaik, kolaborasi produk, produk perawatan kulit dan kecantikan, kampanye pemasaran produk, dan brand lokal dengan produk perawatan kecantikan. Dapat disimpulkan bahwa jumlah topik 6 menghasilkan topik-topik yang relevan mengenai merek Somethinc.
Prediksi Harga Saham Telkom Menggunakan Prophet: Analisis Pengaruh Sentimen Publik Terhadap Kehadiran Starlink: Telkom Stock Price Prediction Using Prophet: Analysis of the Effect of Public Sentiment on the Presence of Starlink Taofiqurrohman, Hendra; Wufron, Wufron; Roji, Fikri Fahru
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1796

Abstract

Fluktuasi harga saham menjadi tantangan signifikan bagi investor dan perusahaan karena dipengaruhi oleh berbagai faktor, termasuk sentimen publik di media sosial. Sebagian besar model prediksi tradisional hanya mengandalkan data historis sehingga kurang mampu menangkap dinamika eksternal yang memengaruhi harga saham. Penelitian ini bertujuan untuk memprediksi harga saham PT Telkom Indonesia Tbk (TLKM) dengan mengintegrasikan sentimen publik terkait kehadiran Starlink sebagai variabel eksternal pada model Prophet. Data sentimen diperoleh dari Twitter dengan algoritma Valence Aware Dictionary and Sentiment Reasoner (VADER), sementara data harga saham diambil dari Yahoo Finance untuk periode Mei hingga Oktober 2024. Hasil penelitian menunjukkan bahwa integrasi sentimen publik meningkatkan akurasi prediksi, dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 2,927%, Mean Squared Error (MSE) sebesar 12102.43, dan Root Mean Square Error (RMSE) sebesar 110.01. Sentimen positif, seperti pada 27 Oktober 2024 dengan compound score 0.5106, menghasilkan prediksi sebesar 3030.75 dibandingkan harga aktual 2910.0. Sebaliknya, sentimen negatif pada 20 September 2024 dengan compound score sebesar -0.3613 menurunkan prediksi menjadi 3137.48 dibandingkan harga aktual 3150.0. Penelitian ini memberikan wawasan tambahan tentang dampak opini publik terhadap harga saham dan merekomendasikan perluasan sumber data, integrasi variabel eksternal yang lain, serta penggunaan metode deep learning untuk meningkatkan akurasi prediksi di masa depan.
Analisis Sentimen Coretax: Perbandingan Pelabelan Data Manual, Transformers-Based, dan Lexicon-Based pada Performa IndoBERT: Sentiment Analysis of Coretax: A Comparison of Manual, Transformers-Based, and Lexicon-Based Data Labeling on IndoBERT Performance Rizkia, Agnia Suci; Wufron, Wufron; Roji, Fikri Fahru
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2151

Abstract

Analisis sentimen terhadap opini publik di media sosial menjadi tantangan signifikan karena kompleksitas bahasa informal dan volume data yang besar. Penelitian ini bertujuan untuk mengevaluasi pengaruh lima pendekatan pelabelan data manual, IndoBERT , IndoBERT weet, RoBERTa , dan InSet Lexicon terhadap performa model Indonesian Bidirectional Encoder Representations from Transformers (IndoBERT) dalam klasifikasi sentimen terkait isu Coretax. Sebanyak 8.035 tweet dikumpulkan, diproses, dan dilabeli menggunakan masing-masing pendekatan. Dataset hasil pelabelan kemudian digunakan untuk melatih ulang model IndoBERT, yang dievaluasi menggunakan metrik akurasi, F1-score, confusion matrix, dan kurva Receiver Operating Characteristic-Area Under the Curve (ROC-AUC). Hasil menunjukkan bahwa pelabelan otomatis menggunakan Indonesian Bidirectional Encoder Representations from Transformers for Tweet (IndoBERTweet) menghasilkan metrik tertinggi F1-Score (0,9802), tetapi mengalami dominasi kelas netral yang menunjukkan overfitting. Pelabelan manual menghasilkan distribusi kelas yang lebih merata meskipun dengan metrik lebih rendah F1-Score (0,8684), sedangkan Robustly Optimized BERT Pretraining Approach (RoBERTa) menunjukkan keseimbangan terbaik antara performa metrik dan distribusi label. InSet Lexicon dan IndoBERT menunjukkan kecenderungan bias terhadap kelas tertentu. Simpulan dari penelitian ini menegaskan bahwa efektivitas pelabelan tidak hanya ditentukan oleh skor metrik, tetapi juga oleh distribusi kelas yang seimbang untuk menghasilkan model yang adil dan dapat digeneralisasi.