Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Computer Science and Information Technology (CoSciTech)

Aplikasi pengenalan permainan tradisional nusantara (pandora) berbasis android Nurhadi; M. Mashudi; Perty Putriani Saragih; Praba Isna Tasya; Triyani Arita Fitri
Jurnal CoSciTech (Computer Science and Information Technology) Vol 3 No 3 (2022): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v3i3.4399

Abstract

Nusantara adalah negara kepulauan yang terbentang luas dari pulau Sumatera hingga Papua yang merupakan bagian dari wilayah Indonesia. Indonesia yang merupakan negara akan kaya akan budaya. Salah satu budaya yang dimiliki Indonesia adalah budaya permainan tradisional nusantara. PANDORA merupakan aplikasi android yang memberikan informasi berbagai permainan tradisional di Indonesia dan dilengkapi dengan adanya fitur-fitur Tentang PANDORA. Tujuan penelitian ini adalah membangun aplikasi PANDORA (Permainan Tradisional Nusantara) sebagai sarana penanaman pendidikan karakter melalui pelestarian kebudayaan bangsa. Metode penelitian yang di gunakan adalah Extreme Programming (XP). Penelitian ini menghasil sebuah aplikasi yang berisikan fitur – fitur dan informasi yang dapat membantu masyarakat mendapatkan informasi permainan tradisional nusantara.
Perbandingan Metode Learning Vector Quantization Dan Backpropagation Dalam Klasifikasi Personality Pada Anak Novita, Rita; Sujana, Teguh; Agusviyanda, Agusviyanda; Fitri, Triyani Arita; Susanti, Susanti
Computer Science and Information Technology Vol 5 No 3 (2024): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research focuses on classifying children's personalities at Rumah Bermain Bilal using Artificial Neural Network algorithms, specifically Learning Vector Quantization (LVQ) and Backpropagation. The primary objective of this study is to evaluate the effectiveness of these algorithms in categorizing children's personality data and to identify the most accurate method for educational settings. The experiments were conducted with various configurations, including the number of iterations and learning rate, to assess the performance of each algorithm comprehensively. The findings show that the LVQ method demonstrates higher accuracy than Backpropagation. For training data, LVQ achieved an accuracy of 73.47%, whereas Backpropagation reached only 40.82%. For test data, LVQ achieved an accuracy of 84.62%, significantly outperforming Backpropagation's 53.85%. These results indicate that LVQ is more effective in personality classification, especially in an educational context. It is hoped that these findings will assist educational institutions in implementing artificial intelligence-based methods to understand children's personality traits better, thereby supporting the development of more targeted teaching strategies.