p-Index From 2020 - 2025
7.253
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) JURNAL SISTEM INFORMASI BISNIS Epsilon: Jurnal Matematika Murni dan Terapan Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Mimbar Sekolah Dasar POSITIF KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Komputasi Jurnal Sains dan Informatika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurnal Pengembangan Riset dan Observasi Teknik Informatika Journal of Computer Science and Informatics Engineering (J-Cosine) J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Formil (Forum Ilmiah) Kesmas Respati Journal of Electronics, Electromedical Engineering, and Medical Informatics Jurnal Pengabdian Kepada Masyarakat (Mediteg) Altasia : Jurnal Pariwisata Indonesia Jurnal Mnemonic Jurnal Teknik Informatika (JUTIF) J-SAKTI (Jurnal Sains Komputer dan Informatika) JUSTIN (Jurnal Sistem dan Teknologi Informasi) Journal of Data Science and Software Engineering Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
Claim Missing Document
Check
Articles

Combination of texture feature extraction and forward selection for one-class support vector machine improvement in self-portrait classification Reina Alya Rahma; Radityo Adi Nugroho; Dwi Kartini; Mohammad Reza Faisal; Friska Abadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp425-434

Abstract

This study aims to validate self-portraits using one-class support vector machine (OCSVM). To validate accurately, we build a model by combining texture feature extraction methods, Haralick and local binary pattern (LBP). We also reduce irrelevant features using forward selection (FS). OCSVM was selected because it can solve the problem caused by the inadequate variation of the negative class population. In OCSVM, we only need to feed the algorithm using the true class data, and the data with pattern that does not match will be classified as false. However, combining the two feature extractions produces many features, leading to the curse of dimensionality. The FS method is used to overcome this problem by selecting the best features. From the experiments carried out, the Haralick+LBP+FS+OCSVM model outperformed other models with an accuracy of 95.25% on validation data and 91.75% on test data.
Efek Transformasi Wavelet Diskrit Pada Klasifikasi Aritmia Dari Data Elektrokardiogram Menggunakan Machine Learning Dodon Turianto Nugrahadi; Tri Mulyani; Dwi Kartini; Rudy Herteno; Mohammad Reza Faisal; Irwan Budiman; Friska Abadi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 1 (2023): Januari 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i1.4859

Abstract

Arrhythmia is one of the abnormalities of the heart rhythm, and some patients who suffer from arrhythmia do not feel any symptoms. Automating the early detection of arrhythmia is necessary by using an electrocardiogram. Previous research that had been done conducted classifications using several methods of data mining. In this research, the transformation for processing signals used is Discrete Wavelet Transformation, where a filtering process occurs that separates signals into high and low-frequency signals without losing the information from signals and is carried out with a two-level decomposition. After that, data normalization was performed using min-max normalization and was put into the model classification using the Support Vector Machine method with a Gaussian Radial Basis Function kernel of Naïve Bayes and K-Nearest Neighbor. Each data that was being used consisted of 140 data with a total of 35 data for each label. This research shows that at level 1 decomposition, the highest accuracy was obtained at db7 for the classification using Support Vector Machine with an accuracy of 73,57%, 68,57% for Naïve Bayes, K-Nearest Neighbor with k=3 resulting in an accuracy of 59,64%, and K-Nearest Neighbor with k=5 resulting in an accuracy of 63,57% while at level 2 decomposition the highest accuracy was obtained at db6 dan db8 for the classification using Support Vector Machine with an accuracy of 70,71%, 67,50% for Naïve Bayes, K-Nearest Neighbor with k=3 resulting in an accuracy of 66,07%, and K-Nearest Neighbor with k=5 resulting in an accuracy of 65%. From this research, it can be concluded that the highest accuracy is produced by decomposition level 1 using Support Vector Machine classification and that the Daubechies wavelet type has better results than the Haar wavelet.
Implementasi Seleksi Fitur Binary Particle Swarm Optimization pada Algoritma K-NN untuk Klasifikasi Kanker Payudara Rahmat Hidayat; Dwi Kartini; Muhammad Itqan Mazdadi; Irwan Budiman; Rahmat Ramadhani
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 11, No 1 (2023)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v11i1.53608

Abstract

Kanker Payudara adalah jenis kanker paling umum yang sering menyerang kalangan wanita di seluruh dunia. Diagnosa awal yang akurat dalam mendeteksi kanker payudara memainkan peran penting dalam pengobatan pasien karena semakin cepat kanker di diagnosa semakin cepat juga pengobatan dapat diberikan. Untuk menghasilkan diagnosa yang akurat terhadap pasien kanker payudara maka dilakukan penelitian dengan tujuan mendapatkan model klasifikasi yang dapat memberikan klasifikasi yang akurat terhadap penyakit kanker payudara. Algoritma klasifikasi yang sering digunakan dan cukup terkenal adalah K-Nearest Neighbor (K-NN). Algoritma K-NN melakukan klasifikasi menggunakan konsep tetangga terdekat berdasarkan pada data terdahulu, akan tetapi algoritma K-NN lemah terhadap data dengan jumlah fitur yang besar. Maka dari itu, untuk kasus dataset dengan banyak fitur dapat dilakukan seleksi fitur terlebih dahulu untuk meningkatkan performa klasifikasi K-NN. Salah satu yang sering digunakan untuk seleksi fitur adalah algoritma Binary Particle Swarm Optimization (BPSO). Pada penelitian ini akan dibuat 2 model klasifikasi K-NN yaitu model klasifikasi K-NN saja tanpa seleksi fitur dan model klasifikasi K-NN dengan seleksi fitur Binary Particle Swarm Optimization, Kemudian dilakukan perbandingan hasil akurasi yang didapat. Dataset yang akan digunakan adalah Breast Cancer Wincosin (Diagnostic) dari UCI Machine Learning Repository yang memiliki 569 data dan 30 fitur. Hasil penelitian menunjukan model K-NN+BPSO menghasilkan akurasi sebesar 95,32% dan model K-NN menghasilkan akurasi sebesar 94,15%. Berdasarkan akurasi yang didapatkan algoritma K-NN dengan seleksi fitur menghasilkan akurasi yang lebih baik daripada algoritma K-NN tanpa seleksi fitur sebesar 1,17%. Algoritma Binary PSO juga berhasil mereduksi fitur dari 30 fitur menjadi 5 fitur dengan tidak mengurangi akurasi dari model klasifikasi. Sehingga dapat disimpulkan bahwa pada kasus klasifikasi kanker payudara dengan dataset Breast Cancer Wincosin (Diagnostic) algoritma K-NN dapat dikombinasikan dengan seleksi fitur Binary PSO untuk membuat model klasifikasi yang memberikan performa cukup baik.
Implementasi Metode Haralick dengan Random Forest Classifier untuk identifikasi Penyakit Kentang Pada Citra Daun Muhammad Syahriani Noor Basya Basya; Andi Farmadi; Dwi Kartini; Radityo Adi Nugroho; Rudy Herteno
Journal of Data Science and Software Engineering Vol 3 No 03 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Potato plants are one of the most widely grown food crops in the highlands of Indonesia. Besides being used as food, potatoes are now known to be used to fight free radicals, control blood sugar, and nourish the digestive system. Therefore, potatoes have good prospects for development. In connection with efforts to develop potatoes in Indonesia, there are obstacles, namely the attack of potato plants by disease. As for the disease in potato plants, one of the characteristics of knowing it is on the leaves. To identify the leaf image, the texture feature is an important feature to recognize the leaf from an image. This is because there are differences in texture between normal and diseased leaves. To perform image processing through texture features, one method that can be used is haralick. In this study, a system was created to identify the types of diseases present in potato leaves using the Haralick method with the Random Forest Classifier. The image used is 300 data consisting of 3 classes, namely Late Blight, Early Blight, and Health. In this study, the testing was carried out by dividing the training and testing data with a percentage of 70:30, 80:20, and 90:10. The highest accuracy value in this study was obtained by using a combination of 80:20 split data, which was 0.88. The 70:30 data split gets an accuracy of 0.85 and the 90:10 data split gets an accuracy of 0.87.
Prediction of Post-Operative Survival Expectancy in Thoracic Lung Cancer Surgery Using Extreme Learning Machine and SMOTE Ajwa Helisa; Triando Hamonangan Saragih; Irwan Budiman; Fatma Indriani; Dwi Kartini
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 2 (2023): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i2.25973

Abstract

Lung cancer is the most common cause of cancer death globally. Thoracic surgery is a common treatment for patients with lung cancer. However, there are many risks and postoperative complications leading to death. In this study, we will predict life expectancy for lung cancer patients one year after thoracic surgery The data used is secondary data for lung cancer patients in 2007-2011. There are 470 data consisting of 70 death class data and 400 survival class data for one year after surgery. The algorithm used is Extreme learning machine (ELM) for classification, which tends to be fast in the learning process and has good generalization performance. Synthetic Minority Over-sampling (SMOTE) is used to solve the problem of imbalanced data. The proposed solution combines the benefits of using SMOTE for imbalanced data along with ELM. The results show ELM and SMOTE outperform other algorithms such as Naïve Bayes, Decision stump, J48, and Random Forest. The best results on ELM were obtained at 50 neurons with 89.1% accuracy, F-Measure 0.86, and ROC 0.794. In the combination of ELM and SMOTE, the accuracy is 85.22%, F-measure 0.864, and ROC 0.855 on neuron 45 using a data division proportion of 90:10. The test results show that the proposed method can significantly improve the performance of the ELM algorithm in overcoming class imbalance. The contribution of this study is to build a machine learning model with good performance so that it can be a support system for medical informatics experts and doctors in early detection to predict the life expectancy of lung cancer patients.
Perbandingan Ekstraksi Fitur dengan Pembobotan Supervised dan Unsupervised pada Algoritma Random Forest untuk Pemantauan Laporan Penderita COVID-19 di Twitter Sulastri Norindah Sari; Mohammad Reza Faisal; Dwi Kartini; Irwan Budiman; Triando Hamonangan Saragih; Muliadi Muliadi
Jurnal Komputasi Vol 11, No 1 (2023): Jurnal Komputasi
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/komputasi.v11i1.6650

Abstract

Dimasa sekarang masyarakat sudah berani melaporkan dirinya terpapar COVID-19 melalui unggahan di media sosial seperti Twitter. Hal ini dapat dimanfaatkan oleh masyarakat sekitar atau lembaga kesehatan untuk memberikan bantuan terhadap pelapor. Pemantauan laporan penderita COVID-19 di Twitter dapat dilakukan secara otomatis dengan algoritma machine learning untuk klasifikasi teks. Pada kasus klasifikasi teks, algoritma machine learning menerima input berupa data terstruktur hasil ekstraksi fitur dengan teknik unigram dengan pembobotan. Metode pembobotan kata unsupervised merupakan pembobotan yang tidak memperhatikan letak term di kelas positif atau negatif. Kemudian metode pembobotan ini dikembangkan menjadi pembobotan supervised, karena dalam proses pembobotannya metode ini membobotkan term dengan memperhatikan letak term di kelas positif atau negatif. Pada riset ini dilakukan perbandingan kedua jenis pembobotan pada klasifikasi data tweet gejala covid dengan algoritma machine learning yaitu Random Forest. Dari hasil penelitian didapat hasil kinerja klasifikasi dengan pembobotan supervised Delta TF-IDF terbukti lebih bagus dengan akurasi sebesar 88,5% sedangkan dengan pembobotan unsupervised TF-IDF diperoleh hasil akurasi 87,9%
Application of SMOTE to Handle Imbalance Class in Deposit Classification Using the Extreme Gradient Boosting Algorithm Dina Arifah; Triando Hamonangan Saragih; Dwi Kartini; Muliadi Muliadi; Muhammad Itqan Mazdadi
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 2 (2023): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i2.26155

Abstract

Deposits became one of the main products and funding sources for banks and increasing deposit marketing is very important. However, telemarketing as a form of deposit marketing is less effective and efficient as it requires calling every customer for deposit offers. Therefore, the identification of potential deposit customers was necessary so that telemarketing became more effective and efficient by targeting the right customers, thus improving bank marketing performance with the ultimate goal of increasing sources of funding for banks. To identify customers, data mining is used with the UCI Bank Marketing Dataset from a Portuguese banking institution. This dataset consists of 45,211 records with 17 attributes. The classification algorithm used is Extreme Gradient Boosting (XGBoost) which is suitable for large data. The data used has a high-class imbalance, with "yes" and "no" percentages of 11.7% and 88.3%, respectively. Therefore, the proposed solution in the research, which focused on addressing the Imbalance Class in the Bank marketing dataset, was to use Synthetic Minority Over-sampling (SMOTE) and the XGBoost method. The result of the XGBoost study was an accuracy of 0.91016, precision of 0.79476, recall of 0.72928, F1-Score of 0.56198, ROC Area of 0.93831, and AUCPR of 0.63886. After SMOTE was applied, the accuracy was 0.91072, the precision was 0.78883, the recall was 0.75588, F1-Score was 0.59153, ROC Area was 0.93723, and AUCPR was 0.63733. The results showed that XGBoost and SMOTE could outperform other algorithms such as K-Nearest Neighbor, Random Forest, Logistic Regression, Artificial Neural Network, Naïve Bayes, and Support Vector Machine in terms of accuracy. This study contributes to the development of effective machine learning models that can be used as a support system for information technology experts in the finance and banking industries to identify potential customers interested in subscribing to deposits and increasing bank funding sources.
Classification of Natural Disaster Reports from Social Media using K-Means SMOTE and Multinomial Naïve Bayes Nor Indrani; Mohammad Reza Faisal; Irwan Budiman; Dwi Kartini; Friska Abadi; Septyan Eka Prastya; Mera Kartika Delimayanti
Journal of Computer Science and Informatics Engineering (J-Cosine) Vol 7 No 1 (2023): June 2023
Publisher : Informatics Engineering Dept., Faculty of Engineering, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jcosine.v7i1.503

Abstract

Disasters can occur anytime and anywhere. Floods and forest fires are two types of disasters that occur in Indonesia. South Kalimantan Province is an area that frequently experiences floods and forest fires. The dataset used for previous research's flood and forest fire disaster data is unbalanced. Unbalanced data conditions can complicate the classification method in carrying out the classification process. The sampling method for the data level approach that can be used to solve imbalance problems is oversampling, one of the derivatives of oversampling, namely SMOTE. The K-Means SMOTE method is a modification of SMOTE. One Naïve Bayes model often used in text classification is Multinomial Naïve Bayes. Multinomial Naïve Bayes has a good performance in classifying text. The research results on flood disaster data using K-Means SMOTE with Multinomial Naïve Bayes yielded an f1 score of 66.04%, and forest fire disaster data using K-Means SMOTE with Multinomial Naïve Bayes produced an f1 score of 66.31%.
Automated Detection of COVID-19 Cough Sound using Mel-Spectrogram Images and Convolutional Neural Network Muhammad Fauzan Nafiz; Dwi Kartini; Mohammad Reza Faisal; Fatma Indriani; Triando Hamonangan Saragih
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26374

Abstract

COVID-19 disease is known as a new disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant. The initial symptoms of the disease commonly include fever (83-98%), fatigue or myalgia, dry cough (76-82%), and shortness of breath (31-55%). Given the prevalence of coughing as a symptom, artificial intelligence has been employed as a means of detecting COVID-19 based on cough sounds. This study aims to compare the performance of six different Convolutional Neural Network (CNN) models (VGG-16, VGG-19, LeNet-5, AlexNet, ResNet-50, and ResNet-152) in detecting COVID-19 using mel-spectrogram images derived from cough sounds. The training and validation of these CNN models were conducted using the Virufy dataset. Audio data was processed to generate mel-spectrogram images, which were subsequently employed as inputs for the CNN models. The AlexNet model, utilizing an input size of 227x227, exhibited the best performance with the highest Area Under the Curve (AUC) value of 0.930303. This study provides compelling evidence of the efficacy of CNN models in detecting COVID-19 based on cough sounds through the utilization of mel-spectrogram images. Furthermore, the study underscores the impact of input size on model performance. The primary contribution of this research lies in identifying the CNN model that demonstrates the best performance in COVID-19 detection based on cough sounds. Additionally, this study establishes the fundamental groundwork for selecting an appropriate CNN methodology for early detection of COVID-19.
Implementation of Particle Swarm Optimization Feature Selection on Naïve Bayes for Thoracic Surgery Classification Shalehah; Muhammad Itqan Mazdadi; Andi Farmadi; Dwi Kartini; Muliadi
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 3 (2023): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeemi.v5i3.305

Abstract

Thoracic surgery is among the operations that are most often performed on patients with lung cancer. Naive Bayes is one of the data mining classification techniques that may be used to handle thoracic surgery data. Therefore, the goal of this study is to assess the precision of all research models using Naive Bayes with and without Particle Swarm Optimization. This study's methodology includes the dataset used, the Naive Bayes algorithm theory, the particle swarm optimization algorithm, test validation using split validation, and performance assessment using the confusion matrix and AUC evaluation approaches. In this inquiry, secondary data are retrieved via the UCI Repository website. Thoracic surgery weight optimization accuracy is increased using particle swarm optimization. The test results of the Naive Bayes technique utilizing the thoracic surgery dataset showed the highest accuracy of 81.91% at a ratio of 80:20 and an AUC value of 0.620. The highest accuracy score is 93.62% with an AUC value of 0.773 at a ratio of 90:10, with three characteristics, namely PRE6, PRE14, and PRE17, having zero weight. This accuracy score was achieved when Particle Swarm Optimization was used to refine feature selection for attribute weighting. As a consequence, Naïve Bayes accuracy in thoracic surgery has increased as a result of attribute weighting on feature selection utilizing Particle Swarm Optimization. In turn, this research contributes to increasing the precision and efficiency with which thoracic surgical data are processed, which benefits lung cancer diagnosis in both speed and accuracy.
Co-Authors A.A. Ketut Agung Cahyawan W Abadi, Friska Abdullayev, Vugar Adawiyah, Laila Adin Nofiyanto, Adin Ahdyani, Annisa Salsabila Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Aida, Nor Ajwa Helisa Al Habesyah, Noor Zalekha Andi Farmadi Andi Farmadi Anshari, Muhammad Ridha Ansyari, Muhammad Ridho Antoh, Soterio Arfan Eko Ari Widodo Aryastuti, Nurul Azizah, Siti Roziana Bachtiar, Adam Mukharil Badali, Rahmat Amin Budiman, Irwan Daduk Merdika Mansur Dalimunthe, Gallang Perdhana Deni Kurnia Diana Sari Dike Bayu Magfira, Dike Bayu Dina Arifah Dita Amara Dodon Turianto Nugrahadi Dzira Naufia Jawza Faisal, Mohammad Reza Faisal, Mohammad Reza Fathmah, Siti Fatma Indriani Fatma Indriani Favorisen R. Lumbanraja Fitra Ahya Mubarok Friska Abadi Halimah Halimah Helma Herlinda Herteno, Rudy Ihsan, Muhammad Khairi Indriani, Fatma Irwan Budiman Irwan Budiman Irwan Budiman Itqan Mazdadi, Muhammad Jhondy Baharsyah Lestari, Mega Lilies Handayani Mafazy, Muhammad Meftah Mahmud Mahmud Maya Yusida Mera Kartika Delimayanti Miftakhul Huda Muhammad Fauzan Nafiz Muhammad Itqan Mazdadi Muhammad Reza Faisal, Muhammad Reza Muhammad Syahriani Noor Basya Basya Muliadi Muliadi Muliadi Muliadi . Muliadi . Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi, M Muliadi, Muliadi Musyaffa, Muhammad Hafizh Nafiz, Muhammad Fauzan Nor Indrani Nurcahyati, Ica Nurdiansyah Nurdiansyah Nurul Chamidah P., Chandrasekaran Padhilah, Muhammad Pirjatullah Pirjatullah Radityo Adi Nugroho Radityo Adi Nugroho Rahmat Hidayat Rahmat Ramadhani Reina Alya Rahma Riadi, Putri Agustina Rizky, Muhammad Hevny Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Rusdiani, Husna Safitri, Yasmin Dwi Said, Muhammad Al Ichsan Nur Rizqi Salsha Farahdiba Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sari, Fitri Eka Septyan Eka Prastya Shalehah Siena, Laifansan Siti Aisyah Solechah Sulastri Norindah Sari Sule, Ernie Tisnawati Tri Mulyani Triando Hamonangan Saragih Vina Maulida, Vina Wahyu Caesarendra Wijaya Kusuma, Arizha Yevis Marty Oesman YILDIZ, Oktay Yuyus Suryana