Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal Of Artificial Intelligence And Software Engineering

Development of a Microservice-Based Attendance System with Face Recognition and QR Code at SMK Negeri 2 Cimahi Riyan, Riyan; Sugianto, Castaka Agus
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7417

Abstract

Sistem absensi manual yang masih banyak digunakan di lingkungan sekolah sering menimbulkan permasalahan, seperti ketidakefisienan proses pencatatan, potensi kecurangan kehadiran, dan keterlambatan penyampaian informasi kepada pihak sekolah maupun orang tua. Penelitian ini bertujuan mengembangkan sistem absensi digital berbasis arsitektur microservice dengan mengintegrasikan teknologi pengenalan wajah (face recognition) untuk absensi harian, pemindaian kode respons cepat (quick response code) untuk absensi per mata pelajaran, serta pengiriman notifikasi otomatis melalui WhatsAppApplication Programming Interface (API). Sistem dikembangkan menggunakan metode Waterfall melalui tahapan analisis kebutuhan, perancangan sistem, implementasi, pengujian, dan pemeliharaan. Pengujian dilakukan secara langsung dengan fokus pada pengujian fungsional terhadap fitur utama yang telah dirancang. Hasil pengujian menunjukkan bahwa seluruh fitur dapat berjalan dengan baik sesuai kebutuhan pengguna, membantu proses verifikasi kehadiran menjadi lebih cepat dan akurat, serta mempercepat penyampaian informasi ketidakhadiran kepada orang tua. Penelitian ini menunjukkan bahwa implementasi arsitektur microservice efektif dalam meningkatkan kualitas sistem absensi sekolah dan memiliki prospek untuk pengembangan lebih lanjut.
Sentiment Analysis of Netizen Opinions on TikTok Towards iPhone Using Naïve Bayes Algorithm and Support Vector Machine (SVM) Pebriana, Sela; Sugianto, Castaka Agus
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7011

Abstract

This study aims to analyze TikTok users’ sentiment toward the iPhone by utilizing TikTok comments as the primary data source. TikTok was chosen due to its high user engagement and ease of access to spontaneous public opinions. A total of 964 comments were collected and processed through a data cleaning stage. The sentiments were classified into positive and negative categories using two popular machine learning algorithms: Naïve Bayes and Support Vector Machine (SVM). This comparison was conducted to evaluate the effectiveness of each algorithm in handling local social media data, which is typically brief and unstructured. The results show that Naïve Bayes achieved an accuracy of 74%, while SVM reached 71%. These findings indicate that Naïve Bayes performs better in fast sentiment analysis of short-text public opinions and has practical potential for monitoring consumer perception and supporting efficient digital marketing strategies.