Solving initial value problems (IVPs) in ordinary differential equations (ODEs) often requires numerical methods, with the fifth-order Runge-Kutta method being a widely used approach due to its balance between accuracy and computational efficiency. A novel and straight forward formula for the fifth order Runge-Kutta method is proposed, aiming to simplify calculations while maintaining high accuracy and stability. The method is derived using an optimized Taylor series expansion, leading to a more efficient formulation. Numerical experiments are conducted to compare the proposed method with existing fifth-order Runge-Kutta methods. The results showthat the proposed formula out performs existing methods in terms of accuracy, stability, and computational efficiency. This new formula provides a practical alternative for solving IVPs in ODEs with improved performance.