This research aims to analyze the performance of Support Vector Machine (SVM) algorithm in classifying sentiment of e-commerce product reviews on the Tokopedia platform using web scraping data of 571 reviews from the 2024 period. The data includes review text variables, publication dates, and usernames processed through text preprocessing (text cleaning, stopword removal, stemming with Sastrawi), auto-labeling using a lexicon-based approach, and TF-IDF feature extraction with optimal parameters (max_features=5000, ngram_range=(1,2)) resulting in 1,187 features. Data splitting was performed using stratified method with proportions of training (80%) and testing (20%) on 461 reviews from binary classification filtering (positive vs negative). The research results demonstrate that Support Vector Machine with linear kernel achieved excellent performance with accuracy 95.70%, precision 95.89%, recall 95.70%, and F1-score 94.89% on the testing set. Despite the imbalanced dataset characteristics (92.4% positive vs 7.6% negative), SVM effectively handled the classification task by identifying negative sentiment with 100% precision and 42.86% recall, demonstrating its robustness in handling skewed data distribution. TF-IDF feature analysis identified the highest discriminative words such as "suitable", "goods", and "good" that are relevant for classifying consumer sentiment towards e-commerce products. The results indicate that SVM algorithm is highly effective for sentiment classification of e-commerce product reviews, making it suitable for practical implementation in automated sentiment analysis systems for online marketplaces.