Claim Missing Document
Check
Articles

Found 14 Documents
Search

Pemanfaatan Running text Sebagai Media Informasi Waktu Solat Dilengkapi Tartil Otomatis di Mushalla Darul Falah Solok Selatan Edwar Rosman; Katrina Flomina G; Miftahul Hasanah; Widya Febriani; Yerri Kurnia Febrina; Eva Oktavia; Muhammad Ibrahim Nasution; Taruma Leo Wijaya
JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) Vol. 6 No. 4 (2025)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/jurpikat.v6i4.2757

Abstract

Musala Darul Falah is a place of worship for Muslims located in Jorong Koto Tuo, Nagari Lubuk Malako, Sangir Jujuan District, South Solok Regency. The mosque is regularly visited by the local community for the five daily prayers, and it also hosts routine religious classes for children and teenagers. Currently, the prayer schedule at Musala Darul Falah is still managed using a conventional method, specifically a chalkboard. If there are any changes in the prayer times, they must be manually updated. The appearance of the prayer schedule board is quite basic and lacks an aesthetic appeal. In fact, places of worship should incorporate elements of beauty to enhance the comfort of the congregation during prayer. To address this issue, the management of Musala Darul Falah, in collaboration with the Community Service Team, has installed a digital prayer schedule display in the form of a running text device with an automatic call-to-prayer feature. This device can be accessed and controlled through a smartphone. The design and appearance of the content displayed on the running text can be customized by the management according to their preferences. With the installation of this running text device, it is hoped that the management of Musala Darul Falah will have a more efficient way to manage the prayer schedule and add an aesthetic touch to improve the comfort of the congregation
THE SYSTEM TO PREDICT VOLCANIC ERUPTIONS WITH BACKPROPAGATION METHOD Sy, Yulia Jihan; Kurnia, Rahmi Putri; G, Katrina Flomina
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 2 (2025): Maret 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i2.3529

Abstract

Abstract: This system for predicting volcanic eruptions will produce information that can help BMKG in making decisions to provide warnings to residents around the mountain. This will also help in mitigating volcanic eruptions, evacuating residents in volcanic eruptions. By using artificial neural networks with the backpropagation method, it can be used to predict volcanic eruptions. To conduct this test, criteria and factors that influence this volcanic eruption are needed. This method is tested using Matlab 6.1 software. In this test, various patterns will be carried out to compare the results of the network. From the various patterns tested, it can be seen that the number of epochs used affects the test results and will achieve the desired goal. The more epochs used, the faster the goal will be achieved. Where in the 4-2-1 pattern the goal was found in the 7th epoch with an error value of 0.0987135. This 4-2-1 pattern states that this network is tested with 4 input layers, 2 hidden layers and 1 output layer. The α value (α = learning rate) used is the Default value of 0.1. With this backpropagation method, you get more accurate results by getting smaller error values.            Keywords: backpropagation, matlab 6.1, layer, epoch, goal Abstrak: Sistem untuk memprediksi gunung meletus ini akan menghasilkan informasi yang bisa membantu BMKG dalam mengambil keputusan untuk memberikan peringatan kepada warga sekitar gunung. Hal ini juga akan membantu dalam mitigasi bencana gunung meletus , evakuasi warga sekitar dalam bencana gunung meletus. Dengan menggunakan jaringan saraf tiruan dengan metode backpropagation bisa digunakan untuk memprediksi gunung meletus. Untuk melakukan pengujian ini dibutuhkan kriteria dan faktor yang mempengaruhi gunung meletus ini. Metode ini diuji dengan menggunakan software Matlab 6.1. Pada pengujian ini akan dilakukan dengan berbagai pola untuk membandingkan hasil dari jaringan tersebut. Dari berbagai pola yang diuji dapat dilihat bahwa jumlah epoch yang dipakai mempengaruhi hasil pengujian dan akan mencapai goal yang diinginkan. Semakin banyak epoch yang dipakai maka akan semakin cepat goal tersebut dicapai. Dimana pada pola 4-2-1 goal ditemukan pada epoch ke 7 dengan nilai eror 0,0987135. Pola 4-2-1 ini menyatakan bahwa jaringan ini diuji dengan 4 jumlah input layer, 2 hidden layer dan 1 output layer. Nilai α  (α = learning rate) yang digunakan adalah nilai Default yaitu 0.1. Dengan metode backpropagation ini mendapatkan hasil yang lebih akurat dengan mendapatkan nilai eror yang lebih kecil . Kata kunci: backpropagation ; epoch ; goal ; layer ; matlab 6.1
SISTEM PENYIRAMAN OTOMATIS PADA PEMBIBITAN PRE-NURSERY KELAPA SAWIT BERBASIS INTERNET OF THINGS Rosman, Edwar; Flomina G, Katrina; Hasanah, Miftahul; Salam, Riyan Ikhbal; Eka Putra, Dian
Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Vol 12 No 2 (2024): TEKNOIF OKTOBER 2024
Publisher : ITP Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21063/jtif.2024.V12.2.131-138

Abstract

The application of automation technology in the agricultural sector is a highly effective solution for improving the efficiency and productivity of seedling cultivation, particularly in oil palm nurseries. CV Pangean Raya TBS is an oil palm nursery business located in Solok Selatan Regency. CV Pangean Raya TBS is currently facing challenges in the watering process of oil palm seedlings, as it is still done manually. This manual method leads to wasted time, labor, and water. Manual watering often results in uneven water distribution, which can affect the quality of the oil palm seedlings. This research aims to design and implement an efficient Internet of Things (IoT)-based automatic watering system using a soil moisture sensor, ESP32 module, and RTC. The system is designed to monitor soil moisture conditions in real time and regulate watering automatically. The automatic watering is based on the moisture values detected by the sensor. Watering can also be manually controlled via a smartphone when needed, such as during rainfall, to prevent water wastage and overwatering of the oil palm seedlings. This system can help plantation owners optimize water usage, increase seedling productivity, and reduce dependence on manual labor. The research results indicate that the watering system can operate automatically based on the moisture data received, making it effective in conserving resources, improving productivity, and providing better control over plant conditions.
Segmentasi Pelanggan Toko Hanifah Berdasarkan Analisis RFM dengan Metode K-Means Clustering Febrina, Yerri Kurnia; Saputra, Riyan; G, Katrina Flomina
Jurnal Pustaka AI (Pusat Akses Kajian Teknologi Artificial Intelligence) Vol 5 No 2 (2025): Pustaka AI (Pusat Akses Kajian Teknologi Artificial Intelligence)
Publisher : Pustaka Galeri Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55382/jurnalpustakaai.v5i2.1084

Abstract

Penjualan merupakan aspek krusial dalam bisnis karena secara langsung mempengaruhi pendapatan dan daya saing di pasar. Dalam konteks ritel, pendekatan penjualan yang seragam sering kali kurang efektif mengingat keragaman karakteristik dan perilaku belanja pelanggan. Penelitian ini dilakukan di Toko Hanifah, sebuah toko kebutuhan harian, dengan tujuan mengelompokkan pelanggan berdasarkan perilaku belanja mereka menggunakan analisis RFM (Recency, Frequency, Monetary) yang kemudian diklasifikasikan lebih lanjut menggunakan algoritma K-Means Clustering. Melalui pendekatan ini, pelanggan berhasil dikelompokkan ke dalam empat klaster, yaitu pelanggan reguler, pasif, loyal, dan pelanggan potensial. Klasterisasi ini didukung oleh analisis Principal Component Analysis (PCA) yang menunjukkan sebaran klaster yang jelas. Hasil penelitian ini memberikan kontribusi praktis dalam merumuskan strategi penjualan yang lebih efisien dan terarah, serta meningkatkan efektivitas pemasaran berdasarkan karakteristik masing-masing kelompok pelanggan. Pendekatan ini juga membuktikan potensi pemanfaatan data transaksi dalam mendukung pengambilan keputusan bisnis di sektor ritel.