Claim Missing Document
Check
Articles

Pembangunan Sistem Customer Relationship Management (Crm) Pada Pt. Fazypcare Putri, Ika Rahmah; Witanti, Wina; Umbara, Fajri Rakhmat
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 5, No 1 (2021): SEMNAS RISTEK 2021
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v5i1.5049

Abstract

PT. FazyPCare merupakan perusahaan yang bergerak dibidang jasa service laptop&PC. Saat ini sebagian besar kegiatan pada perusahaan masih menggunakan sistem lama yaitu pelanggan datang langsung ke perusahaan dan menyerahkan laptop/komputer yang akan di service lalu mencatat jadwal servicenya. Pada sistem lama perusahaan tidak dapat melakukan hubungan secara terus-menerus kepada pelanggan. Hal ini menimbulkan masalah dikarenakan pelanggan tidak dapat membantu pemasaran produk yang dimilikiperusahaan, pelanggan tidak terpantau oleh perusahaan dan akhirnya terjadi penurunan penghasilan dari perusahaan karena terjadinya persaingan, dengan munculnya perusahaan – perusahaan serupa yang baru berdiri dengan kualitas yang baik. Penelitian ini bertujuan untuk membangun sebuah Customer Relationship Management (CRM) yang berbasis website pada PT. FazyPCare agar dapat menjalin hubungan yang baik dan meningkatkan pelayanannya kepada client. Penelitian ini bertujuan untuk menghasilkan sebuah Sistem Customer Relationship Management (CRM) berbasis website. Dengan adanya sistem ini PT. FazyPCare dapat menjalin hubungan yang berkelanjutan, menampung keluhan client, dan dapat meningkatkan layanannya kepada client agar tidak kalah bersaing dengan perusahaan sejenis lainnya.
Penerapan Metode SMOTE Dalam Klasifikasi Sentimen Publik Terhadap Polisi Republik Indonesia Menggunakan Support Vector Machine Destiyanti, Fitri; Hadiana, Asep Id; Umbara, Fajri Rakhmat
JUMANJI (Jurnal Masyarakat Informatika Unjani) Vol 8 No 1 (2024): Jurnal Masyarakat Informatika Unjani
Publisher : Jurusan Informatika Universitas Jenderal Achmad Yani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26874/jumanji.v8i1.336

Abstract

Analisis sentimen atau ekstraksi opini adalah penelitian yang mengevaluasi sudut pandang, pemikiran, serta persepsi mengenai berbagai topik, subjek, dan produk dengan memanfaatkan data opini yang tersedia pada platform media sosial.. Platform media sosial populer seperti YouTube, khususnya melalui saluran "86 & Custom Protection NET" yang bekerjasama dengan Kepolisian Negara Republik Indonesia, menyajikan aktivitas polisi dan mendapat respons dari masyarakat dalam bentuk komentar. Komentar-komentar ini menjadi sumber data dalam penelitian text mining untuk mengklasifikasikan sentimen positif atau negatif. Penelitian ini menggunakan pendekatan menggunakan machine learning dengan metode Support Vector Machine (SVM) dan teknik SMOTE untuk menangani ketidakseimbangan data dalam komentar youtube. Hasil analisis menunjukkan akurasi sebesar 91%, dengan presisi 63%, recall 68%, dan f1 score 65% berdasarkan perhitungan confusion matrix.
PENGELOMPOKAN TINGKAT RISIKO PENYAKIT DIABETES MELITUS MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING Gestavito, Rio; Hadiana, Asep Id; Umbara, Fajri Rakhmat
JUMANJI (Jurnal Masyarakat Informatika Unjani) Vol 8 No 1 (2024): Jurnal Masyarakat Informatika Unjani
Publisher : Jurusan Informatika Universitas Jenderal Achmad Yani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26874/jumanji.v8i1.338

Abstract

Penelitian ini fokus pada diabetes melitus (DM), kondisi metabolik kronis dengan tingkat gula darah tinggi karena kurangnya insulin. Faktor penyebab DM bervariasi, termasuk kurangnya produksi insulin oleh sel beta Langerhans di pankreas dan ketidakresponsifan tubuh terhadap insulin. Penyakit ini prevalen di negara berkembang dan diperkirakan terus meningkat. Studi ini menggunakan algoritma K-Means Clustering untuk mengelompokkan risiko DM. Evaluasi pada k = 2 menunjukkan data dalam klaster cenderung bercampur, dengan nilai Silhouette Coefficient 0.5716 dan Davies Bouldin Index 0.672. Visualisasi scatter menunjukkan penyebaran data yang seragam dalam klaster, memberikan pemahaman mendalam tentang pola data. Hasilnya dapat mendukung pemahaman dan penanganan lebih lanjut terhadap DM.
KLASIFIKASI VIDEO PADA MEDIA SOSIAL YOUTUBE DENGAN MENGGUNAKAN METODE K-MEANS DAN SUPPORT VECTOR MACHINE Krisdianto Sitanggang, Sari; Rakhmat Umbara, Fajri; Ashaury, Herdi
Jurnal Locus Penelitian dan Pengabdian Vol. 2 No. 10 (2023): jurnal locus penelitian dan pengabdian
Publisher : Riviera Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58344/locus.v2i10.1732

Abstract

Dalam era digital dan sosial media, platform seperti YouTube telah menjadi salah satu sumber utama video konten. Meningkatnya jumlah video di YouTube memunculkan kebutuhan untuk mengklasifikasikan video-video ini, baik untuk tujuan manajemen konten, rekomendasi, atau penegakan hukum. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan metode klasifikasi video yang efektif berdasarkan kontennya. Tujuan dari penelitian ini Mengembangkan sistem klasifikasi video yang dapat mengidentifikasi dan mengkategorikan video di platform media sosial YouTube. Mengimplementasikan metode k-Means dan Support Vector Machine (SVM) sebagai alat utama dalam proses klasifikasi. Meningkatkan akurasi dalam mengklasifikasikan video berdasarkan fitur-fitur kontennya. Meningkatkan pemahaman tentang penggunaan teknik Machine Learning dalam mengelola konten video di platform media sosial. Penelitian ini menggunakan metode k-Means untuk mengelompokkan video berdasarkan kesamaan fitur-fitur kontennya. Selanjutnya, Support Vector Machine (SVM) digunakan untuk melakukan klasifikasi berdasarkan hasil kelompok dari k-Means. Data yang digunakan dalam penelitian ini terdiri dari dataset video dari YouTube, dan fitur-fitur ekstrak yang relevan seperti tag, deskripsi, dan pemrosesan gambar. Proses eksperimen dan pengujian dilakukan untuk mengukur akurasi klasifikasi. Hasil penelitian ini menunjukkan bahwa kombinasi metode k-Means dan SVM dapat digunakan untuk mengklasifikasikan video pada platform media sosial YouTube dengan tingkat akurasi yang baik. Dengan menggunakan fitur-fitur konten yang relevan, sistem ini mampu mengenali kategori video dengan baik, yang bermanfaat untuk manajemen konten, analisis, dan rekomendasi. Kesimpulan dari penelitian ini Dalam era digital yang dipenuhi dengan konten video, penelitian ini menawarkan pendekatan yang efektif dalam mengklasifikasikan video di platform media sosial YouTube. Metode k-Means dan SVM berhasil digunakan untuk mengelompokkan dan mengklasifikasikan video dengan akurasi yang baik.
Prediksi Capaian Bulanan Pajak Daerah Kabupaten Bandung Barat Menggunakan Metode Logistic Regression Ramdhani, Muhammad; Umbara, Fajri Rakhmat; Ilyas, Ridwan
Journal of Information System Research (JOSH) Vol 5 No 4 (2024): Juli 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v5i4.5330

Abstract

Tax is the main source of income for the state, so that tax revenue is the biggest contributor to government agencies. However, the Regional Revenue Agency (BAPENDA) sometimes has difficulties in predicting regional monthly income. The data owned by BAPENDA is very important for estimating tax increases every month, but often these estimates are wrong. Therefore, research on predicting monthly tax ACHIEVEMENT is very helpful. Researchers consider the data mining method approach is a technique that can help BAPENDA find predictive patterns that are important for making tax increase decisions. sebumnya has predicted the results of the Ann method where for neurons 20 it produces an rmse prediction of 0.12. In this study, the logistic regression algorithm approach was used to predict regional tax achievements in West Bandung Regency. In addition, experiments were carried out to evaluate which variables affect the probability value.
Klasifikasi Kanker Payudara Berbasis Deep Learning Menggunakan Vision Transformer dengan Teknik Augmentasi Data Citra Ardiyansyah, Muhamad Salman; Umbara, Fajri Rakhmat; Melina, Melina
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8619

Abstract

Breast cancer ranks among the leading causes of death in women worldwide. Early detection through mammographic image analysis plays a crucial role in increasing survival rates. However, manual interpretation of mammograms requires expert knowledge and is prone to errors. This study aims to develop a breast cancer classification model using mammography images based on the Vision Transformer (ViT) architecture without employing transfer learning. The dataset used is the Digital Database for Screening Mammography (DDSM), consisting of two categories: benign and malignant. To address class imbalance, undersampling and data augmentation techniques (flipping, rotation, cropping, and noise injection) were applied. All images were normalized and resized to 224×224 pixels to match the ViT input requirements. The model was trained for five epochs with a batch size of 16. Evaluation on the test data was conducted using seven metrics: accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Cohen’s Kappa Score, and Area Under the Curve (AUC). The results show that the model achieved an accuracy of 92.50%, precision of 90.48%, recall of 95.00%, F1-score of 92.68%, MCC of 85.11%, Kappa Score of 85.00%, and AUC of 95.75%. These findings indicate that the Vision Transformer is highly effective for mammographic image classification and holds potential as a reliable tool for automated breast cancer diagnosis support.
Klasifikasi Kesehatan Mental Mahasiswa Menggunakan Light Gradient Boosting Machine Dan Analisa Fitur Menggunakan SHAP Wibowo, Ditto Ridhwan; Umbara, Fajri Rakhmat; -, Ridwan Ilyas
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 4 (2025): Agustus 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i4.8771

Abstract

The mental health of college students is an important issue as many do not receive treatment despite needing it. According to the Association of University and College Counseling Center Directors 95% of college students experience an increase in psychopathology. This study uses the Light Gradient Boosting Machine algorithm to classify the mental health of college students based on a dataset that has a total of 61.794 rows and 16 columns. Light Gradient Boosting Machine is an implementation of Gradient Boosting Decision Tree which has two strategies namely gradient-base one-side sampling (GOSS) and leaf-wise growth. The accuracy results obtained using LightGBM reached 67% where the data used had been balanced using the class_weight parameter and the ADASYN technique. In addition, the research was analyzed to find the most contributing features using the SHAP (SHapley Additive exPlanations) method with the results obtained there are 6 features that have the highest contribution value including Country, treatment, mental_health_interview, family_history, Gender, dan self_employed.
Sistem Rekomendasi Film Menggunakan Data User-End dan Knowledge Graph Convolutional Network pada Dataset MovieLens 1 M Yanuar, Muhammad Rizki; Umbara, Fajri Rakhmat; -, Agus Komarudin
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 4 (2025): Agustus 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i4.8772

Abstract

Traditional recommendation systems such as Collaborative Filtering and Content-Based Filtering often fail to provide relevant recommendations due to their limitations in handling sparsity and cold-start problems. This study proposes a Knowledge Graph Convolutional Network (KGCN) model enriched with user demographic data from the MovieLens 1M dataset to address these issues. The primary focus of the research is to demonstrate that the Importance Sampling technique is significantly superior to Uniform Sampling in effectively training the model. After hyperparameter tuning, the optimal model configuration achieved peak performance with an AUC score of 0.8798 and NDCG@10 of 0.9719. These results demonstrate that the proposed approach is effective in building an accurate, personalised recommendation system capable of addressing sparsity and cold-start issues.
ANALISIS CLUSTER PADA KELOMPOK MASYARAKAT YANG RENTAN TERHADAP PAPARAN COVID-19 MENGGUNAKAN METODE K-MEANS CLUSTERING DAN VISUALIASI DENGAN SIG Drl, Indra Raja; Chrisnanto, Yulison Herry; Umbara, Fajri Rakhmat
Informatics and Digital Expert (INDEX) Vol. 4 No. 2 (2022): INDEX, November 2022
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v4i2.885

Abstract

Covid-19 adalah penyakit yang menular serta laju infeksi yang cepat,setelah mencapai 100 kasus yang dikonfirmasikan terinfeksi tingkat penyebarannya meluas, Dengan cepatnya penyebaran wabah Covid-19 masyarakat sangat prihatin dengan penyebaran dan dampaknya ,orang yang sebelumnya sudah memiliki gangguan kesehatan akan meningkatkan risiko terinfeksi Covid-19 gangguan kesehatan ini seperti,tuberkulosis,diabetes ,diare ,hipertensi.Ada pun Faktor lain yang mempengaruhi penyebaran Covid-19 sepert kepadatan penduduk yang tinggi di kota besar ,iklim,suhu dan daerah metropolitan merupakan faktor risiko utama untuk tertular virus. Dari adanya faktor yang mempengaruhi kasus covid-19 sehingga Satgas Penanganan Covid-19 menilai pentingnya bagi semua pihak termasuk masyarakat memahami faktor-faktor lonjakan kasus Covid-19 agar terhindar dari kasus itu.tujuan dari penelitian ini Menggunakan metode K-Means Clustering untuk analisis cluster pada wilayah yang memiliki karakteristik tingginya kasus covid-19 dan variable apa yang berpengaruh terhadap tingginya kasus covid-19 dan divisualisasi menggunakan Sistem informasi geografis sehingga diharapakan dapat menjadi informasi bagi masyarakat dan instansi kesehatan untuk memahami kelompok wilayah yang rentan. kesimpulannya wilayah kota bandung dikelompokan menjadi 3 cluster yang dimana cluster 1 itu wilayah dengan kasus covid-19 tertinggi dan faktor yang mempengaruhi covid-19 juga tinggi untuk cluster 2 memiliki tingkat kasus yang rendah dan cluster 3 memiliki tingkatan yang yang lebih rendah dari kedua cluster.
Deteksi Ujaran Kebencian dengan Metode Klasifikasi Naïve Bayes dan Metode N-Gram pada Dataset Multi-Label Twitter Berbahasa Indonesia Yazid, Rija Muhamad; Umbara, Fajri Rakhmat; Sabrina, Puspita Nurul
Informatics and Digital Expert (INDEX) Vol. 4 No. 2 (2022): INDEX, November 2022
Publisher : LPPM Universitas Perjuangan Tasikmalaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36423/index.v4i2.894

Abstract

Ujaran kebencian adalah ungkapan atau bahasa yang digunakan untuk mengekspresikan kebencian terhadap seseorang atau sekelompok orang. Ujaran kebencian juga memiliki tingkatan ancaman, semakin tinggi tingkat ancaman ujaran kebencian maka akan semakin luas dan cepat penyebarannya sehingga dapat menimbulkan konflik antar individu sampai konflik antar kelompok. Untuk dapat mendeteksi dan mengklasifikasikan ujaran kebencian sekaligus tingkat ancamannya dalam penelitian ini digunakan dataset multi-label dari penelitian sebelumnya dengan menggunakan label yang masuk kedalam topik ujaran kebencian dan tingkat ancaman dengan total sebanyak 4 label. Dalam menyelesaikan permasalahan multi-label tersebut digunakan metode Naïve Bayes sebagai metode klasifikasi dan metode Label Power-set sebagai metode transformasi data, dalam penelitian ini juga digunakan pembobotan TF-IDF sekaligus melakukan beberapa skenario penelitian berdasarkan metode ekstraksi fitur n-gram. Hasil terbaik yang didapatkan berdasarkan hasil evaluasi F-score adalah sebesar 64,957% ketika menggunakan kombinasi metode ekstraksi fitur word unigram, word bigram dan character quadgram. Dari penelitian ini juga didapatkan bahwa semakin banyak fitur yang digunakan maka semakin baik nilai hasil evaluasinya terhadap jenis dataset yang digunakan.
Co-Authors -, Agus Komarudin -, Ridwan Ilyas Adam, Marcellino Ade Kania Ningsih Aditya Bahrul 'Alam, Moch Aditya, Aldy Adzani, Nadhif Nurul Fajri AGIEL FADILLAH HERMAWAN Agri Yodi Prayoga Ahsin Fauzi Aldi Sidik Permana Anwar Fauzi, Mochammad Ardiyansyah, Muhamad Salman Ashaury, Herdi Asrul Badar, Ahmad Cepi, Gan Dava Maulana, Muhammad Delfany Arcadia Valeska Destiyanti, Fitri Dewi Kartika Sari Dewi, Wulan Dian Nursantika Drl, Indra Raja Ella Wahyu Guntari Erna Sesarliana* Fadhilahsyah Ramadhan, Muhammad Diky Faiza Renaldi Fauzan, Ariq Febriansyah Istianto, Andrian Ferdiansyah Ferdian FERDIANSYAH, ALDOVA fery bayu aji FIQRI FAKHRUL GUNAWAN Firmansyah, Rolan Fitri Nurbaya Gestavito, Rio Ginanjar Rahayu Gita Mahesa Hadiana, Asep Id Hasna, Aisyah Nur Hendro, Tacbir Herdi Ashaury Hidayat, Ferdian Afza Hidayat, Mazid Hidayatulah Himawan Hovi Sohibul Wafa Hovi Hovi, Hovi Sohibul Wafa Ilham Danoppati Junior, Rifqi Pratama Kahfi, Muhammad Dzatul Kasyidi, Fatan Kharis Pratama, Adam Kharisma Jevi Shafira Sepyanto Krisdianto Sitanggang, Sari Levi Sabili, Naufal Lio Wilianto Mazid Hidayat Melina Melina Melina Melina, Melina Miftahul Falah Muhamad Ramdan, Muhamad Muhammad Ramdhani, Muhammad Nelsih Putriani Novi Hermansyah Nugroho, Akbar Satrio Nurul Sabrina, Puspita Nusantara, Madya Dharma Oktariansyah, Indro Abri Permana, Acep Handika Pujo Sulardi Puspita Nurul Sabrina Puspita Nurul Sabrina Puspita Nurul Sabrina, Puspita Nurul Putra, Dion Revaldy Putri, Ika Rahmah Rachadian Novansyah Rahandanu Rachmat Reno Setiawan Rezki Yuniarti Ridwan Ilyas Salsabila Fajriati Romli Salsabila Salsabila, Salsabila Fajriati Romli Sapari, Albi Mulyadi Sepyanto, Kharisma Jevi Shafira SETIAWAN, YOSEP Shisi Prayesti Sigit Pratama Siti Aisah Sulardi, Pujo Susanti, Adisti Dwi Susilowati, Merliana Tri Syarifudin Yoga Pinasty Syarifudin Yoga Pinasty Tacbir Hendro Tacbir Hendro Pudjiantoro Tacbir Hendro Pudjiantoro Tacbir Hendro Pudjiantoro Tacbir Hendro Pudjiantoro Tacbir Hendro Pudjiantoro Tiara Rahmawati Tri Wijaya Permana Sidik Wibowo, Ditto Ridhwan Wilianto, Lio Wina Witanti Wina Witanti Yanuar, Muhammad Rizki Yazid, Rija Muhamad Yoga, Yoga Yulison Herry Chrisnanto