Claim Missing Document
Check
Articles

Implementasi Sensor Gas Amonia Berbasis Internet of Things pada Peternakan Ayam Potong dengan Sistem Monitoring dan Pengendalian Kualitas Udara Otomatis: Implementation of Internet of Things-Based Ammonia Gas Sensors on Broiler Chicken Farms with an Automatic Air Quality Monitoring and Control System Budiawan, Aditia; Suryono, Ryan Randy; Darwis, Dedi
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 1 (2025): MALCOM January 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i1.1649

Abstract

Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan sensor gas amonia berbasis IoT pada peternakan ayam potong dengan sistem monitoring dan pengendalian kualitas udara otomatis. Sistem ini menggunakan sensor MQ137 untuk mendeteksi kadar gas amonia dan mikrokontroler ESP32 untuk mengontrol berbagai komponen seperti buzzer, RTC DS1307, dan sistem penyemprotan otomatis. Data kualitas udara dikumpulkan dan dipantau secara real-time melalui aplikasi web, memungkinkan peternak untuk mengambil tindakan cepat dalam menjaga kondisi optimal di kandang ayam. Hasil penelitian menunjukkan bahwa sistem ini efektif dalam mengendalikan kadar gas amonia, dengan penyemprotan air otomatis yang diaktifkan ketika kadar gas melebihi ambang batas 7,2 ppm, sehingga meningkatkan kesehatan dan produktivitas ayam potong
Analisis Sentimen Aplikasi BCA Mobile Menggunakan Algoritma Naive Bayes dan Suport Vector Machine Bhatara, Dimas Wahyu; Suryono, Ryan Randy
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 9, No 4 (2024)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v9i4.5536

Abstract

Kemajuan teknologi telah mengubah banyak aspek terutama dalam hal transaksi, dengan aplikasi seperti BCA Mobile menjadi salah satu pilihan utama. Aplikasi ini memungkinkan pengguna untuk melakukan berbagai aktivitas finansial secara online. Dengan popularitasnya yang terus meningkat, mencapai lebih dari 5 juta unduhan di Google Play Store, penelitian ini bertujuan untuk mengevaluasi pandangan pengguna terhadap aplikasi ini, baik positif maupun negatif. Analisis dilakukan menggunakan dua metode utama, yaitu algoritma Naïve Bayes dan Support Vector Machine (SVM), yang kemudian diperbaiki kinerjanya dengan menggunakan Synthetic Minority Over-Sampling Technique (SMOTE). Hasil penelitian menunjukkan bahwa SVM mencapai akurasi 85%, sementara Naïve Bayes 83%. Meskipun keduanya memiliki tingkat akurasi yang hampir serupa terdapat perbedaan dalam kemampuan masing-masing model dalam mengklasifikasikan sentimen positif dan negatif..Naïve Bayes memiliki recall yang sedikit lebih rendah untuk ulasan positif sebesar 81% dibandingkan dengan SVM mencapai 85%, namun memiliki presisi yang sedikit lebih tinggi..Sebaliknya, SVM memiliki recall yang lebih rendah untuk ulasan negatif, namun memiliki presisi yang lebih tinggi..Ini menunjukkan kemampuan SVM dalam menangani distribusi fitur dan kelas yang kompleks, yang tidak dapat ditangani dengan baik oleh Naïve Bayes.
ANALISIS SENTIMEN HATE SPEECH MENGENAI CALON WAKIL PRESIDEN INDONESIA MENGGUNAKAN ALGORITMA BERT Junita, Elvika Alya; Suryono, Ryan Randy
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 9, No 4 (2024)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v9i4.5625

Abstract

Indonesia sebagai negara demokratis mengalami momen penting menjelang  pemilihan  umum,  khususnya  presiden  dan  wakil  presiden.  Persaingan politik yang sengit diwarnai dengan beragam pandangan dan retorika politik. Namun, munculnya hate speech sebagai bentuk ekstrem dari ekspresi politik mengancam stabilitas sosial dan integritas demokrasi. Hate speech dapat mengganggu harmoni masyarakat, mempengaruhi proses pemilihan umum dengan menyebarkan informasi palsu, dan merusak suasana politik. Analisis sentimen sangat penting dalam mendeteksi dan menangani hate speech terkait dengan calon Wakil Presiden Indonesia. Penelitian ini menggunakan data Twitter untuk mengeksplorasi opini masyarakat terhadap calon presiden dengan kata kunci Imin, Gibran, dan Mahfud MD sebanyak 2692 data. Hasil eksperimen menunjukkan bahwa algoritma BERT memiliki tingkat akurasi yang sangat tinggi, mencapai rata-rata 100% pada dataset Gibran Rakabuming Raka dan Mahfud MD. Analisis juga menunjukkan bahwa proporsi sentimen positif terhadap calon wakil presiden menunjukkan kecenderungan bahwa Muhaimin Iskandar mencapai tingkat akurasi 98,17%.
ANALISIS SENTIMEN APLIKASI X PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAÏVE BAYES DAN SUPPORT VECTOR MACHINE (SVM) Eskiyaturrofikoh, Eskiyaturrofikoh; Suryono, Ryan Randy
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 9, No 3 (2024)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v9i3.5392

Abstract

Dalam era digital saat ini, Google Play Store telah menjadi salah satu platform terkemuka bagi pengguna Android untuk mengakses dan mengunduh berbagai aplikasi. Oleh karena itu, ulasan yang dipublikasikan di platform ini memberikan gambaran yang berharga tentang sentimen pengguna terhadap aplikasi tertentu. Tujuan penelitian ini adalah untuk menganalisis sentimen terhadap aplikasi X di Google Play Store dengan menggunakan dua metode klasifikasi yang berbeda, yakni Naïve Bayes dan Support Vector Machine (SVM). Dataset yang terdiri dari 4087 ulasan telah dikumpulkan dan dibagi menjadi dua bagian, yaitu data training (70%) dan data testing (30%). Hasil penelitian menunjukkan bahwa sebelum penerapan teknik SMOTE, akurasi SVM adalah 75,5%, sedangkan akurasi Naïve Bayes adalah 75%. Namun, setelah penerapan SMOTE, akurasi SVM meningkat menjadi 81%, sementara akurasi Naïve Bayes tetap pada 75,5%. Hasil ini menunjukkan bahwa penggunaan teknik SMOTE dapat meningkatkan kinerja model klasifikasi, terutama dalam hal mengenali sentimen positif dan negatif pada ulasan aplikasi. Analisis sentimen ini memberikan pemahaman yang lebih dalam tentang preferensi pengguna dan membantu pengembang aplikasi untuk meningkatkan pengalaman pengguna mereka dengan lebih baik.
CLASSIFICATION OF PUBLIC SENTIMENT TOWARDS STUNTING PREVENTION PROGRAM USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE ON X APPLICATION Fitria, Desi; Suryono, Ryan Randy
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 6 (2024): JUTIF Volume 5, Number 6, Desember 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.6.3998

Abstract

Indonesia has serious health problems, one of which is stunting among children. Stunting is caused by chronic malnutrition that affects a child's physical and cognitive growth. To address its impact, the government launched a prevention program that focuses on improving nutrition, improving sanitation, and health education. Public response to these programs has varied, with some supportive and others skeptical. In the digital age, public opinion is expressed through social media, making sentiment analysis important to understand public perception. This research aims to classify public sentiment towards the stunting prevention program using Naive Bayes and Support Vector Machine (SVM) methods. Data preprocessing includes cleaning, case folding, tokenizing, stopwords, and stemming, ensuring the text data is ready for analysis. The dataset consists of 5907 tweets divided by a ratio of 80:20, resulting in 4725 tweets for training data and 1182 tweets for testing data. The analysis results show that the Naive Bayes model achieved an accuracy of 95.34% for training data and 84.52% for testing data, while SVM achieved an accuracy of 95.43% for training data and 96.74% for testing data, indicating the performance of the SVM model is better than the Naïve Bayes model. The important impact of this research is to assist policymakers in understanding the public's perception of government programs so that they can design communication strategies.
SENTIMENT ANALYSIS OF ONLINE DATING APPS USING SUPPORT VECTOR MACHINE AND NAÏVE BAYES ALGORITHMS Laksono, Urip Hadi; Suryono, Ryan Randy
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 1 (2025): JUTIF Volume 6, Number 1, February 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.1.2105

Abstract

In daily life, the use of digital applications is increasingly widespread, making dating apps increasingly popular and an important part of modern social interaction. This research aims to analyze user sentiment towards online dating apps, specifically Tinder, using Support Vector Machine (SVM) and Naïve Bayes algorithms. The problem underlying the importance of this research is the lack of balance between positive and negative sentiments in Tinder app users, which can affect user experience and the quality of service provided by Tinder. Utilizing the CRISP-DM framework, this research involves six stages, from data collection to evaluation. The results showed a significant imbalance between the number of positive and negative sentiments before optimization, but after the application of the SMOTE technique, there was a balancing between the two sentiment categories. SVM achieved 85% accuracy, while Naïve Bayes achieved 84%, with similar performance in identifying positive and negative sentiments. While both models performed satisfactorily, SVM appeared more stable in recognizing both positive and negative sentiments, suggesting the potential to be a superior choice in the context of dating apps. As such, this research makes an important contribution to the understanding of users' views on Timder apps and provides a basis for further development.
COMPARISON OF ACCURACY OF VARIOUS TEXT CLASSIFICATION METHODS IN SENTIMENT ANALYSIS OF E-STAMPS AT X Bagus Reynaldi, Dimas; Suryono, Ryan Randy
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 1 (2025): JUTIF Volume 6, Number 1, February 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.1.3999

Abstract

In the rapidly evolving digital era, technological innovations are applied in various fields, including law and administration, to improve the efficiency and effectiveness of processes. One of the latest innovations in Indonesia is the implementation of e-metals, which is designed to facilitate legal and secure electronic transactions, and meet the needs of a society that is increasingly dependent on digital technology. Although e-stamps aim to improve efficiency and security in transactions, there are still various perceptions from the public that reflect their views and experiences regarding the implementation of this technology. In this case, sentiment analysis is an effective method to evaluate public opinion generated from text data, such as user reviews and comments on social media. This research aims to analyze the sentiment towards e-metallocations in X app, using text classification methods to separate positive and negative sentiments. After collecting 3282 datasets and performing preprocessing that includes case folding, data cleaning, tokenizing, and stemming, the evaluation results show that the Naive Bayes (GNB) model achieves 96.65% accuracy on training data and 95.28% on testing data. On the other hand, the Support Vector Machine (SVM) model recorded an accuracy of 98.32% on training data and 96.80% on testing data. Meanwhile, the Random Forest model showed a perfect accuracy of 100% on training data and 99.09% on testing data, making it the highest performing model among the three methods tested.
SENTIMENT ANALYSIS OF POST-COVID ONLINE EDUCATION AMONG GEN Z WITH VARIOUS CLASSIFICATION METHODS Bakti, Da'i Rahman; Suryono, Ryan Randy
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 1 (2025): JUTIF Volume 6, Number 1, February 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.1.4003

Abstract

The COVID-19 pandemic has significantly changed the education sector, shifting from traditional learning to online learning. Generation Z's perception of online education is influenced by their experience as “Digital Natives” who have been familiar with technology since childhood. However, this sudden transition brings new challenges, such as screen fatigue, lack of social interaction, and difficulty in maintaining learning motivation. Sentiment analysis is an important tool to evaluate their experiences and views on online learning. This study aims to investigate Generation Z's views on online education after the pandemic, utilizing various classification methods. Data was collected from Twitter through scraping technique with specific keywords, resulting in a total of 4,986 data obtained using the Tweet Harvest library in Python programming language. The dataset then went through a preprocessing stage, including data cleaning, case folding, tokenizing, stopword removal, and stemming. Before applying Random Forest, SVM, and Naïve Bayes methods, the data is divided into two parts, namely, 3988 training data and 998 testing data with a ratio of 80:20. The accuracy results show that Naïve Bayes achieved 95.49% on training data and 76.05% on testing data, SVM recorded 94.77% accuracy on training data and 87.33% on testing data, and Random Forest obtained 99.97% accuracy on training data and 92.21% on testing data. This research provides important insights into Generation Z's perceptions of post-COVID-19 online education and learning platforms to improve the effectiveness of online learning and identify student challenges in the digital era.
PERFORMANCE COMPARISON OF NAIVE BAYES, SUPPORT VECTOR MACHINE AND RANDOM FOREST ALGORITHMS FOR APPLE VISION PRO SENTIMENT ANALYSIS Pratama, Rangga Rizky; Suryono, Ryan Randy
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 1 (2025): JUTIF Volume 6, Number 1, February 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.1.4035

Abstract

With the development of spatial computing devices, there arises a need to analyze consumer opinions about products such as the Apple Vision Pro (AVP), a technology that combines augmented reality (AR) and virtual reality (VR). This study aims to analyze consumer opinions on the Apple Vision Pro by utilizing data from the social media platform X. Three algorithms—Random Forest, Support Vector Machine (SVM), and Naïve Bayes—are used in text categorization to identify sentiment trends. Data was collected through a crawling process, resulting in 3,753 entries. After preprocessing and labeling, 2,609 clean data points were obtained, with 1,618 classified as negative and 991 as positive. In sentiment analysis, Random Forest delivered the best performance with an accuracy of 83%, followed by SVM at 80%, and Naïve Bayes at 75%. These results indicate that the Random Forest algorithm is more effective in sentiment categorization related to Apple Vision Pro. This study provides significant contributions to companies in understanding public perceptions and crafting more precise data-driven marketing strategies.
Optimizing Employee Admission Selection Using G2M Weighting and MOORA Method Rahmanto, Yuri; Wang, Junhai; Setiawansyah, Setiawansyah; Yudhistira, Aditia; Darwis, Dedi; Suryono, Ryan Randy
Paradigma - Jurnal Komputer dan Informatika Vol. 27 No. 1 (2025): March 2025 Period
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/p.v27i1.8224

Abstract

An objective and effective employee admission selection process is a crucial step for the success of the organization in achieving its goals. Problems in employee recruitment selection often arise due to a lack of good planning and system implementation, namely decisions are often influenced by personal preferences, stereotypes, or non-relevant factors, thus reducing objectivity in choosing the best candidates. Objective selection ensures that candidate assessments are conducted based on measurable, relevant, and bias-free criteria, so that only individuals who truly meet the company's needs and standards are accepted. The purpose of developing an optimal approach in employee admission selection using G2M weighting and MOORA is to create a more objective, efficient, and accurate selection process. This approach aims to integrate the calculation of criterion weights mathematically, such as those offered by G2M, in order to eliminate subjective bias in determining criterion prioritization. The MOORA method of evaluating alternative candidates is carried out through ratio analysis that takes into account various criteria simultaneously, resulting in a transparent and data-driven ranking. The results of the employee admission selection ranking based on the criteria that have been evaluated, Candidate 3 obtained the highest score of 0.4177, indicating that this candidate best meets the expected criteria. The second position was occupied by Candidate 6 with a score of 0.3886, followed by Candidate 9 with a score of 0.3528. This research contributes to the recruitment process, by providing a more reliable, transparent, and less subjective way of selecting the right candidates for the positions that companies need.
Co-Authors ., Bagastian Achmad Nizar Hidayanto Ade Dwi Putra Aditia Yudhistira Agresia, Vania Ahmad Ari Aldino Ajie Tri Hutama Al Afif, Satria Anadas, Sylvi Ananda, Dhea AndaruJaya, Rinaldi Sukma Ansyah, Ferdi Ariany, Fenty Arshad, Muhammad Waqas Bagus Reynaldi, Dimas Bakti, Da'i Rahman Bhatara, Dimas Wahyu Budi Santosa Budi Santosa Budiawan, Aditia Budiman, Ega Christ Mario Cynthia Deborah Nababan Dana Indra Sensuse Dana Indra Sensuse Darmini Darmini DAVID KURNIAWAN Dede Krisna Friansyah Dedi Darwis Desi Fitria Dewantoro, Mahendra Dinda Septia Ningsih Dwi Nanda Agustia Dyah Ayu Megawaty Eko Putro, Dimas Eskiyaturrofikoh, Eskiyaturrofikoh Firdaus, Noval Dinda Firmanda, Fabian Fudholi, Muhammad Fahmi Gunawan, Rakhmat Dedi Handini, Meitry Ayu Hasiholan Simamora, Alfred Heni Sulistiani Hermana, BP Putra Ignatius Adrian Mastan Indra Budi INDRIANI, YULIA Isnain, Auliya Rahman Iwan Purwanto Iwan Purwanto Juarsa, Doris Junita, Elvika Alya Kamrozi Karimah Sofa Kautsarina Kautsarina Kautsarina Kautsarina Kautsarina Kautsarina Kautsarina Krishna Yudhakusuma P.M. Laksono, Urip Hadi Megawaty, Dyah Ayu Meliana, Yovi Mesran, Mesran Miranda, Khyntia Muh. Alviazra Virgananda Muhamad Adhytia Wana Putra Rahmadhan Muhammad Fadli Muhammad Ridwan Muhammad Waqas Arshad Mustaqim, Ilham Zharif Natasha Panca Hadi Putra Prasetio, Mugi Pratama, Rangga Rizky Pratiwi, Adelia Purnama, Putri Intan Purwanti, Dian Sri Rachmad Nugroho Rachmi Azanisa Putri Rahmat Dedi Gunawan Raihandika, M Rafi Ramadhani, Bagus Reifco Harry Farrizqy Rias Kumalasari Devi Riyama Ambarwati Sanjaya, Ival Sanriomi Sintaro Saputra, Melian Jefri Saputra, Rizky Herdian Sari, Kevinda Sari, Putri Kumala Sarumpaet, Lisyo Hileria Setiawan, Andra Setiawansyah Setiawansyah Setyani, Tria Simarmata, Yohanes Sobirin, Muhammad Hamdan Sulistiyo, Raka Sumanto, Sumanto Surono, Muhammad Surya Indra Gunawan Tri Widodo Ulum, Faruk Wahyudi, Agung Deni Wang, Junhai Waqas Arshad, Muhammad Yeni Agus Nurhuda Yeni Agus Nurhuda Yuri Rahmanto Yuspita, Emi