Claim Missing Document
Check
Articles

Komparasi Berbagai Metode Klasifikasi Teks Untuk Sentimen Pengguna Gawai Di Usia Dini Meliana, Yovi; Suryono, Ryan Randy
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4439

Abstract

In the context of rapid digital development, the use of gadgets among Indonesian children has become a very important topic to study. This study aims to analyze sentiments related to gadget use by applying classification methods such as Support Vector Machine (SVM), Naïve Bayes, and Decision Tree. To overcome data imbalance, After applying the SMOTE technique, the results of the study revealed that SVM obtained the highest accuracy of 99% with SMOTE, followed by Decision Tree which reached 98% and Naïve Bayes which obtained 94% when SMOTE was applied. In addition, the application of preprocessing techniques such as tokenization, stemming, and filtering contributed to improving data quality. These findings emphasize the importance of choosing the right method in sentiment analysis to understand the impact of gadget use on children's development. This study provides meaningful insights for the development of better policies and practices related to children's digital device use
Perbandingan Berbagai Metode Klasifikasi Teks Untuk Sentimen Kebijakan Makan Gratis Di Indonesia Yuspita, Emi; Suryono, Ryan Randy
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4440

Abstract

The free meal policy is an important initiative to improve the nutrition of children under five and pregnant women and reduce social inequality. This policy supports low-income families by providing free food and milk in schools and Islamic boarding schools. On social media, especially platform X (Twitter), this policy sparked public discussion. This research aims to analyze sentiment regarding the free meal policy using Naive Bayes, SVM, and Decision Tree methods, as well as providing the effectiveness of classification algorithms in understanding public opinion. Of the 5,205 tweets analyzed, there were 4,735 positive tweets and 470 negative tweets. Applying Smote to this analysis provides significant results. SVM achieved 99% accuracy, Decision Tree also showed good performance with 98% accuracy. Meanwhile, Naive Bayes experienced an increase in accuracy of up to 91%, although it was still less than optimal in detecting negative sentiment compared to SVM and Decision Tree.
Perbandingan Algoritma Naive Bayes dan SVM dalam Analisis Sentimen Pengguna AI di Platform X Firdaus, Noval Dinda; Suryono, Ryan Randy
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.7081

Abstract

The rapid development of artificial intelligence (AI) has also had a significant impact on various aspects of life, including interactions on social media platforms such as Platform X. On this platform, users actively discuss various topics related to AI, from the benefits to the challenges it poses. Understanding how the public responds to AI technology is important for developers, researchers, and policy makers in order to design strategies that are more in line with the needs and expectations of the community. This study aims to evaluate and compare the performance of two algorithms commonly used in sentiment analysis, namely Naïve Bayes and Support Vector Machine (SVM). Data were collected through crawling techniques using Google Colab, which resulted in 9,183 entries. Before the analysis was carried out, the data went through a series of initial processing stages, including text cleaning, letter normalization, tokenization, removing frequently used words (stopword removal), and stemming to simplify words. The results of the analysis show that SVM has advantages in terms of accuracy and capability, namely 96% accuracy in handling complex data, while Naïve Bayes is faster in the computational process and efficient for large datasets, resulting in an accuracy of 84% smaller than SVM accuracy. The assessment is carried out using accuracy, precision, recall, and F1-score metrics based on the confusion matrix.
Peran Big Data dalam Inovasi Bisnis Digital: Pendekatan Tinjauan Literatur Sistematis Fadli, Muhammad; Prasetio, Mugi; Sanjaya, Ival; Surono, Muhammad; Dewantoro, Mahendra; Suryono, Ryan Randy
Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM) Vol. 4 No. 1 (2025): Volume 4 Nomor 1 March 2025
Publisher : PT. SNN MEDIA TECH PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58602/jima-ilkom.v4i1.48

Abstract

Penelitian ini meninjau bagaimana Big Data berperan dalam inovasi bisnis digital, terutama dalam membantu pengambilan keputusan strategis, memperbaiki efisiensi operasional, serta menciptakan Produk dan layanan digital yang benar-benar pas dengan kebutuhan pengguna. Dengan menggunakan pendekatan tinjauan literatur sistematis, penelitian ini mengidentifikasi manfaat signifikan Big Data, termasuk kemampuannya untuk menyediakan analisis mendalam, memprediksi tren pasar, dan personalisasi layanan pelanggan. Namun, penelitian ini juga mengungkap berbagai tantangan dan kendala dalam implementasi Big Data, seperti keterbatasan infrastruktur teknologi, kualitas data yang rendah, serta isu privasi dan keamanan data. Hasil penelitian menunjukkan bahwa pemanfaatan Big Data yang optimal dapat meningkatkan daya saing bisnis digital, tetapi membutuhkan dukungan infrastruktur yang memadai dan kepatuhan terhadap regulasi yang berlaku. Studi ini berkontribusi pada pengembangan pemahaman tentang bagaimana Big Data dapat diintegrasikan ke dalam strategi inovasi bisnis digital untuk mendorong pertumbuhan dan keberlanjutan bisnis di era digital.
Pengaruh Artificial Intelligence Dalam Mendorong Inovasi Dan Efisiensi Technopreneurship Setyani, Tria; Sari, Kevinda; Sulistiyo, Raka; Pratiwi, Adelia; Suryono, Ryan Randy
Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM) Vol. 4 No. 1 (2025): Volume 4 Nomor 1 March 2025
Publisher : PT. SNN MEDIA TECH PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58602/jima-ilkom.v4i1.54

Abstract

Kecerdasan Buatan (AI) telah menjadi kekuatan utama dalam mendorong inovasi dan efisiensi di berbagai sektor industri, termasuk dalam bidang technopreneurship. Penelitian ini bertujuan untuk menganalisis pengaruh AI terhadap inovasi dan efisiensi dalam technopreneurship dengan pendekatan kualitatif deskriptif. Metode pengumpulan data melibatkan studi pustaka, wawancara mendalam dengan pelaku usaha berbasis teknologi, serta observasi terhadap implementasi AI di beberapa startup. Hasil penelitian menunjukkan bahwa AI memiliki peran signifikan dalam meningkatkan inovasi produk dan layanan melalui analisis data, prediksi tren pasar, dan otomatisasi proses bisnis. AI juga meningkatkan efisiensi operasional dengan mengoptimalkan penggunaan sumber daya dan mengurangi ketergantungan pada prosedur manual. Namun, penerapan AI dalam technopreneurship menghadapi beberapa tantangan, seperti keterbatasan keterampilan teknis, biaya investasi yang tinggi, serta isu etika dan keamanan data. Penelitian ini menyarankan perlunya perencanaan strategis dalam implementasi AI untuk memastikan keberhasilan dan manfaat maksimal bagi technopreneur. Temuan ini diharapkan dapat memberikan wawasan bagi pelaku bisnis teknologi dalam mengoptimalkan penggunaan AI guna meningkatkan daya saing dan keberlanjutan bisnis mereka.
Comparison of SVM, Naïve Bayes, and Logistic Regression Algorithms for Sentiment Analysis of Fraud and Bots in Purcashing Concert Ticket Agresia, Vania; Suryono, Ryan Randy
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 2 (2025): July
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/npyfdh47

Abstract

Music concerts are highly anticipated entertainment events, but they are often subject to fraud and the use of bots in online ticket purchases, to the detriment of fans and organisers. Fans may lose confidence in the ticket system and reduce interest in the event. For organizers, it can reduce the event's reputation and finances. This research aims to analyse public sentiment regarding this issue by comparing three classification algorithms: Support Vector Machine (SVM), Naïve Bayes, and Logistic Regression. Data taken from Twitter which contains comments related to fraud and bots. The methods used include data crawling, preprocessing, sentiment labelling, and model evaluation. Preprocessing includes data cleaning, case folding, tokenising, stopwords, and stemming. Sentiment labelling is done manually or by human annotators. The results showed that SVM had the best accuracy of 91.27%, followed by Logistic Regression (90.03%) and Naïve Bayes (77.70%). Applying SMOTE to overcome class imbalance and improve the performance of negative sentiment models. This research emphasizes the importance of choosing the right algorithm and using SMOTE to improve the accuracy of sentiment analysis regarding fraud and bots in concert ticket purchases. The research results can be applied to improve bot usage detection systems and provide insight for organizers.
Audit Tata Kelola Teknologi Informasi untuk Website Pelayanan Terpadu Satu Pintu (PTSP) menggunakan Framework Cobit 5 Sobirin, Muhammad Hamdan; Suryono, Ryan Randy
Dinamik Vol 30 No 2 (2025)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v30i2.10138

Abstract

Website Pelayanan Terpadu Satu Pintu (PTSP) merupakan wujud digitalisasi layanan publik yang membutuhkan tata kelola Teknologi Informasi (TI) yang efektif. Penelitian ini bertujuan untuk mengevaluasi tingkat kematangan tata kelola TI menggunakan framework COBIT 5 serta menilai keamanan dan performa sistem. Metode yang digunakan adalah deskriptif kuantitatif dengan audit pada 13 proses dari lima domain COBIT 5. Pengujian keamanan dilakukan menggunakan Nessus Scanner, sedangkan Apache JMeter digunakan untuk mengukur performa sistem. Hasil evaluasi menunjukkan rata-rata tingkat kematangan sebesar 3,6 dengan selisih (gap) 1,4 dari target level 5 (Optimized). Domain MEA02 memiliki gap tertinggi sebesar 2,1, menunjukkan kurangnya pengawasan internal. Pemindaian keamanan tidak menemukan celah dengan risiko tinggi, namun semua temuan berada pada kategori Informational. Dari sisi performa, halaman Home memiliki waktu respons tertinggi sebesar 22.683 ms dan throughput hanya 2,1 permintaan/detik, jauh di bawah standar pembanding. Hasil ini menunjukkan bahwa meskipun sistem telah berjalan cukup baik, masih diperlukan perbaikan dalam aspek pengawasan, keamanan, dan performa agar layanan PTSP dapat berjalan lebih optimal dan stabil.
Systematic Literature Review: Fintech dan Program Pemerintah dalam Permodalan UMKM: Inklusi atau Ilusi Santosa, Budi; Budiman, Ega; Simarmata, Yohanes; Kurniawan, David; Indriani, Yulia; Suryono, Ryan Randy
Jurnal Ekonomika Dan Bisnis (JEBS) Vol. 5 No. 1 (2025): Januari - Februari
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jebs.v5i1.2579

Abstract

Penelitian ini bertujuan untuk menganalisis peran teknologi keuangan (fintech) dan sumber permodalan lainnya dalam mendukung inklusi keuangan serta keberlanjutan usaha mikro, kecil, dan menengah (UMKM) di Indonesia. Dengan pendekatan systematic literature review (SLR), 10 studi primer dianalisis untuk mengevaluasi inklusivitas, efisiensi, dan keberlanjutan solusi pendanaan berbasis fintech. Hasil penelitian menunjukkan bahwa fintech secara signifikan meningkatkan inklusi keuangan UMKM dengan menyederhanakan akses pendanaan dan mengurangi hambatan prosedural. Namun, tantangan seperti rendahnya literasi keuangan dan adopsi teknologi masih menjadi kendala. Rekomendasi diberikan untuk meningkatkan akses UMKM terhadap pendanaan dan memperkuat literasi keuangan guna mendukung pertumbuhan yang berkelanjutan.
Pengaruh Keterampilan Teknologi dan Inovasi terhadap Keberhasilan Teknopreneurship di Sektor Digital Eko Putro, Dimas; ., Bagastian; Fudholi, Muhammad Fahmi; Hermana, BP Putra; Juarsa, Doris; Suryono, Ryan Randy
Jurnal Ekonomika Dan Bisnis (JEBS) Vol. 5 No. 1 (2025): Januari - Februari
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jebs.v5i1.2595

Abstract

Penelitian ini mengkaji pengaruh keterampilan teknologi dan inovasi terhadap keberhasilan teknopreneurship di sektor digital. Dengan menggunakan metode kaji literatur, penelitian ini menganalisis berbagai studi relevan untuk mengeksplorasi hubungan antara keterampilan teknologi, inovasi, dan daya saing teknopreneur. Hasil penelitian menunjukkan bahwa keterampilan teknologi, seperti penguasaan perangkat lunak, big data, dan teknologi canggih, memberikan keunggulan kompetitif bagi teknopreneur dalam menciptakan solusi efisien dan adaptif terhadap perubahan pasar. Inovasi dalam produk, layanan, dan model bisnis, seperti subscription dan teknologi berbasis cloud computing, memainkan peran signifikan dalam meningkatkan nilai tambah, loyalitas pelanggan, dan keberhasilan usaha. Sinergi antara keterampilan teknologi dan inovasi menghasilkan produk dan layanan yang relevan dengan kebutuhan pasar sekaligus mendorong keberhasilan teknopreneur. Penelitian ini juga menyoroti pentingnya faktor pendukung, seperti akses ke sumber daya keuangan dan kemitraan strategis, dalam mempercepat pengembangan produk dan memperluas pasar. Studi ini memberikan wawasan bagi pengembangan teori dan praktik teknopreneurship di era digital.
A Systematic Literature Review of Topic Modeling Techniques in User Reviews Mustaqim, Ilham Zharif; Suryono, Ryan Randy
Journal of Information Systems Engineering and Business Intelligence Vol. 11 No. 2 (2025): June
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jisebi.11.2.238-253

Abstract

Background: The escalating volume of user review data is necessitating automated methods for extracting valuable insights. Topic modeling was a vital method for understanding key discussions and user opinions. However, there was no comprehensive analysis of the scientific work specifically on topic modeling applied to user review datasets, including its main applications and a comparative analysis of the strengths and limitations of identified methods. This study addressed the gap by characterizing the scientific discussion, identifying potential directions, and exploring currently underutilized application areas within the context of user review analysis.  Objective: This study aimed to recognize the implementation trend of topic modeling in various areas and to comprehend the methodology that could be applied to the user review dataset.  Methods: A systematic literature review (SLR) was adopted by implementing Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines within six-year spans, narrowing 1746 to 28 selected primary studies.  Results: The underlying insight was that user reviews had been critical as the primary data for topic modeling in analyzing various applications. Digital banking and transportation applications were the sectors that received the greatest attention. In this context, Latent Dirichlet Allocation (LDA) was the most extensively used method, with a focus on overcoming its limitations by incorporating additional strategies into LDA-based models.  Conclusion: The bibliometric analysis and mapping study practically contributed as a reference when assessing the dominant topic in similar app categories and topic modeling algorithms. Furthermore, this study comprehensively analyzed various topic modeling algorithms, presenting both the strengths and weaknesses of informed selection in relevant applications. Considering the keywords cluster analysis, service quality could be adopted based on the output of the topic modeling.  Keywords: Topic modeling, User review, Systematic literature review, Bibliometric analysis
Co-Authors ., Bagastian Achmad Nizar Hidayanto Ade Dwi Putra Aditia Yudhistira Agresia, Vania Ahmad Ari Aldino Ajie Tri Hutama Al Afif, Satria Anadas, Sylvi Ananda, Dhea AndaruJaya, Rinaldi Sukma Ansyah, Ferdi Ariany, Fenty Arshad, Muhammad Waqas Bagus Reynaldi, Dimas Bakti, Da'i Rahman Bhatara, Dimas Wahyu Budi Santosa Budi Santosa Budiawan, Aditia Budiman, Ega Christ Mario Dana Indra Sensuse Darmini Darmini DAVID KURNIAWAN Dede Krisna Friansyah Dedi Darwis Desi Fitria Dewantoro, Mahendra Dinda Septia Ningsih Dwi Nanda Agustia Dyah Ayu Megawaty Eko Putro, Dimas Eskiyaturrofikoh, Eskiyaturrofikoh Fadli, Muhammad Firdaus, Noval Dinda Firmanda, Fabian Fudholi, Muhammad Fahmi Gunawan, Rakhmat Dedi Handini, Meitry Ayu Hasiholan Simamora, Alfred Heni Sulistiani Hermana, BP Putra Ignatius Adrian Mastan Indra Budi Isnain, Auliya Rahman Iwan Purwanto Iwan Purwanto Juarsa, Doris Junita, Elvika Alya Kamrozi Karimah Sofa Kautsarina Kautsarina Kautsarina Kautsarina Kautsarina Kautsarina Kautsarina Krishna Yudhakusuma P.M. Laksono, Urip Hadi Megawaty, Dyah Ayu Meliana, Yovi Mesran, Mesran Miranda, Khyntia Muh. Alviazra Virgananda Muhamad Adhytia Wana Putra Rahmadhan Muhammad Fadli Muhammad Ridwan Mustaqim, Ilham Zharif Nababan, Cynthia Deborah Natasha Panca Hadi Putra Prasetio, Mugi Pratama, Rangga Rizky Pratiwi, Adelia Purnama, Putri Intan Purwanti, Dian Sri Putra, Djalu Bintang Rachmad Nugroho Rachmi Azanisa Putri Rahmat Dedi Gunawan Raihandika, M Rafi Ramadhani, Bagus Reifco Harry Farrizqy Rias Kumalasari Devi Riyama Ambarwati Sanjaya, Ival Sanriomi Sintaro Saputra, Melian Jefri Saputra, Rizky Herdian Sari, Cici Nurita Kumala Sari, Kevinda Sari, Putri Kumala Sarumpaet, Lisyo Hileria Setiawan, Andra Setiawansyah Setiawansyah Setiyana, Beta Agus Setyani, Tria Simarmata, Yohanes Sobirin, Muhammad Hamdan Sulistiyo, Raka Sumanto, Sumanto Surono, Muhammad Surya Indra Gunawan Tri Widodo Ulum, Faruk Wahyudi, Agung Deni Wang, Junhai Waqas Arshad, Muhammad Yeni Agus Nurhuda Yeni Agus Nurhuda Yulia Indriani Yuri Rahmanto Yuspita, Emi