Perkembangan machine learning mendorong pemanfaatan berbagai model regresi untuk melakukan prediksi data secara akurat dan efisien. Namun, perbedaan karakteristik dataset menyebabkan kinerja setiap model bervariasi, sehingga diperlukan proses benchmarking untuk menentukan model yang paling optimal. Penelitian ini bertujuan untuk membandingkan kinerja beberapa model machine learning dalam tugas prediksi data berbasis regresi tanpa melakukan pengembangan aplikasi. Model yang dievaluasi meliputi Linear Regression, Decision Tree Regression, Random Forest Regression, Support Vector Regression, dan K-Nearest Neighbor Regression. Dataset yang digunakan merupakan dataset publik dengan variabel numerik yang telah melalui tahap praproses data, meliputi pembersihan data, normalisasi, dan pembagian data latih serta data uji. Evaluasi kinerja model dilakukan menggunakan metode K-Fold Cross Validation dengan metrik Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan koefisien determinasi (R²). Hasil penelitian menunjukkan bahwa Random Forest Regression memberikan kinerja terbaik dengan nilai error terendah, nilai R² tertinggi, serta stabilitas model yang baik dibandingkan model lainnya. Hasil ini menunjukkan bahwa pendekatan ensemble efektif dalam meningkatkan akurasi dan kemampuan generalisasi model pada tugas prediksi data regresi.