cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
semdejafet1908@gmail.com
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
JITK (Jurnal Ilmu Pengetahuan dan Komputer)
Published by STMIK Nusa Mandiri
ISSN : -     EISSN : 25274864     DOI : -
Core Subject : Science,
Kegiatan menonton film merupakan salah satu cara sederhana untuk menghibur diri dari rasa gundah gulana ataupun melepas rasa lelah setelah melakukan aktivitas sehari-hari. Akan tetapi, karena berbagai alasan terkadang seseorang tidak ada waktu untuk menonton film di bioskop. Dengan bantuan media internet, berbagai macam aplikasi nonton film android sangat mudah dicari. Hanya bermodalkan smartphone saja para penonton film dapat streaming berbagai macam jenis film di mana saja dan kapan saja mereka inginkan. Akan tetapi, karena banyaknya pilihan aplikasi nonton film android yang bisa digunakan, terkadang seseorang bingung memilihnya. Untuk itu, diperlukan suatu sistem pendukung keputusan yang dapat digunakan para pengguna sebagai alat bantu pengambilan keputusan untuk memilih dengan berbagai macam kriteria yang ada. Salah satu metode yang digunakan adalah metode Analytical Hierarchy Process (AHP). AHP melakukan perankingan dengan melalui penjumlahan antara vector bobot dengan matrik keputusan dengan tujuan agar hasil yang diberikan lebih baik dalam menentukan alternatif yang akan dipilih. Berdasarkan hasil penelitian yang dilakukan oleh 36 sampel responden didapatkan kriteria konten menjadi prioritas pertama pengguna untuk memilih aplikasi nonton film android dengan nilai bobot sebesar 0,224. Sedangkan Netflix menjadi alternatif dengan prioritas pertama keputusan pengguna dalam memilih aplikasi nonton film android dengan nilai bobot sebesar 0,352.
Articles 394 Documents
SYSTEMATIC LITERATURE REVIEW: CHALLENGES AND SOLUTIONS ON AGILE PROJECT MANAGEMENT IN PUBLIC SECTOR Handini Mekkawati; Teguh Raharjo; Rina Yuniarti
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5654

Abstract

The public sector is transforming by adopting an agile approach to overcome bureaucratic rigidity and lagging the private sector. The aim is to overcome the limitations of traditional approaches by encouraging flexibility in planning, operations, and service delivery. In the face of diverse, agile characteristics, further research is required on the challenges and best practices other public sector organizations can adopt. This research identifies key challenges in agile implementation within the PMBOK 7th edition project performance domains with the most issues: Development Approach and Life Cycle and Project Work Domain. Using a systematic literature review (SLR), 35 of 680 reviewed papers were selected as references. The biggest challenges were in the Project Work Domain, dominated by the context of monitoring new work and changes, project processes, and procurement processes. Best practices were identified to address these challenges and guide other public sectors in supporting more flexible and responsive public service delivery.
The HYBRID CONTENT-BASED FILTERING AND CLASSIFICATION RNN WITH PARTICLE SWARM OPTIMIZATION FOR TOURISM RECOMMENDATION SYSTEM Syahdan Naufal Nur Ihsan; Erwin Budi Setiawan
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5674

Abstract

Economic recovery in the tourism sector after the COVID-19 pandemic is one of the main focuses of the Indonesian government at the moment, especially in Bandung City. This research aims to develop a personalized tourist spot recommendation system, by addressing the gaps in the existing literature through the integration of Content-Based Filtering (CBF) and Simple Recurrent Neural Network (RNN) methods that aim to improve recommendation accuracy. This study uses a hybrid approach that combines Term Frequency - Inverse Document Frequency (TF-IDF) and word embedding with the Robustly Optimized BERT (RoBERTa) model to identify similarities between tourist destinations based on their content characteristics. Simple RNN is used to analyze user preference patterns over time, which is then further optimized using Particle Swarm Optimization (PSO). As a result, the Simple RNN model that has been optimized with PSO shows an increased accuracy of up to 94.37%, outperforming other optimizations such as Adam and SGD. This research makes a novel contribution by applying advanced machine learning techniques to improve personalization in travel recommendation systems.
UNLEASHING THE POWER OF SVM AND KNN: ENHANCED EARLY DETECTION OF HEART DISEASE Jefri Junifer Pangaribuan; Ade Maulana; Romindo Romindo
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5719

Abstract

Heart disease is a fatal illness responsible for approximately 36% of deaths in 2020. Therefore, it is important to pay attention to and better anticipate the risk of heart disease. One technological contribution that can be made is through information related to the risk of heart disease. Classification techniques in data mining can be used to diagnose and identify the risk of heart disease earlier by processing medical data and making predictions. This study compares the effectiveness of two classification algorithms, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), in predicting the risk of heart disease using a Kaggle dataset consisting of 303 records with 14 attribute columns. The data is divided into 70% for training and 30% for testing. The software used in this study is Orange Data Mining to build the SVM and KNN models. The results show that the SVM accuracy is 85.6%, while KNN achieves 81.1%. Based on the confusion matrix, the SVM algorithm has a lower error rate compared to KNN. In conclusion, the SVM algorithm is superior to KNN in predicting the risk of heart disease. These findings indicate that SVM has a better potential in identifying individuals at high risk of experiencing a heart attack. This research can contribute to the development of a more accurate medical decision support system for early detection of heart disease.
ENHANCING USER EXPERIENCE (UX) IN BUS TICKET BOOKING: A CASE STUDY OF REDBus APPLICATION Valencia Valencia; Lisana Lisana; Tyrza Adelia
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5721

Abstract

In Indonesia, the number of buses has increased significantly, particularly in major cities. Along with the advancement of mobile technology, people can now purchase bus tickets online using mobile applications. One of the popular online bus ticket booking platforms is RedBus. As one of the widely used applications, it is crucial to focus on User Experience (UX) because it significantly influences user satisfaction, encouraging continued use of the application. However, usability testing of the current RedBus application revealed that users are experiencing several issues, including difficulties in using the app, which leads to low user motivation and dissatisfaction with RedBus services. As a result, a redesign was needed to improve the UX of the RedBus application. Therefore, this study aims to investigate how UX can be improved after a redesign of the application. The redesign process employed the Design Thinking method, which consists of five phases: Empathize, Define, Ideate, Prototype, and Test. UX was measured through usability testing, focusing on effectiveness, efficiency, and user satisfaction. The measurement results of the redesigned RedBus application showed a 44% increase in effectiveness, with efficiency reaching 0.079 goals per second. Additionally, user satisfaction improved by approximately 63% across all criteria. These findings provide practical insights for designers and developers looking to enhance UX in their applications. They underscore the importance of a user-centered approach and demonstrate the effectiveness of Design Thinking as a framework for successful redesigns. Moreover, this research offers a practical guideline on how to measure UX for digital products
MOBILENET PERFORMANCE IMPROVEMENTS FOR DEEPFAKE IMAGE IDENTIFICATION USING ACTIVATION FUNCTION AND REGULARIZATION Handrie Noprisson; Vina Ayumi; Mariana Purba; Nur Ani
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5798

Abstract

Deepfake images are often used to spread false information, manipulate public opinion, and harm individuals by creating fake content, making developing deepfake detection technology essential to mitigate these potential dangers. This study utilized the MobileNet architecture by applying regularization and activation function methods to improve detection accuracy. ReLU (Rectified Linear Unit) enhances the model's efficiency and ability to capture non-linear features, while Dropout and L2 regularization help reduce overfitting by penalizing large weights, thereby improving generalization. Based on experimental results, the MobileNet model optimized with ReLU and Dropout achieved an accuracy of 99.17% in the training phase, 85.34% in validation, and 70.60% in testing, whereas the MobileNet model optimized with ReLU and L2 showed lower accuracy in the training and validation phases compared to Dropout but achieved higher accuracy in testing at 72.18%. This study recommends MobileNet with ReLU and L2 due to its better generalization ability when testing data (resulting from reduced overfitting).
OPTIMIZATION IOT TECHNOLOGY IN WEATHER STATIONS FOR IMPROVE AGRICULTURAL SUCCESS DURING EL NIÑO ERA Dodi Solihudin; Odi Nurdiawan; Rudi Kurniawan; Cep Lukman Rohmat
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5851

Abstract

The El Niño phenomenon is significant to global weather patterns, particularly in Indonesia, which adversely affects the agricultural sector, especially rice production. El Niño causes drastic changes in rainfall patterns, making it difficult for farmers to determine the right planting time. Limited access to accurate weather information is a major obstacle for farmers in planning their agricultural activities. This research aims to develop an Internet of Things (IoT)-based weather station capable of providing real-time and accurate weather data to support farmers' decision-making in their land management. The research method starts with observation in Babakan Jaya Village, Gabuswetan District, Indramayu Regency, to understand the local weather conditions and specific challenges faced by farmers. Next, the construction and implementation of a weather station equipped with sensors to measure various weather parameters such as temperature, humidity, wind direction and speed, and rainfall. The weather data collected by these stations is then processed and presented in real-time through a cloud platform, which allows access from computer devices and smart phones. The observation results from 1 June to 27 July 2024 showed that the air temperature ranged from 29°C to 35°C, humidity between 55% to 90%, and wind speed ranged from 0 to 7 km/h, with sporadic rainfall patterns. The developed IoT weather station successfully provides relevant and accurate weather data, which can be accessed in real-time by farmers. With this data, farmers can make more informed decisions in their land management, hopefully improving the efficiency and success of farming practices, especially in the midst of erratic weather conditions due to El Niño.
IMPLEMENTATION OF MULTIPLE LINEAR REGRESSION ALGORITHM IN PREDICTING RED CHILI PRICES IN GARUT REGENCY Yoga Handoko Agustin; Fitri Nuraeni; Rika Lestari
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5882

Abstract

Vegetables, including red chili peppers, play an important role in food and economic balance. Significant price fluctuations and inflation are often problems for farmers and traders. Garut Regency, as the center of red chili production in West Java, faces similar challenges. This research aims to implement a Multiple Linear Regression algorithm to predict the price of red chili peppers in the Garut Regency, highlighting the novelty of using a combination of One Hot Encoding, Feature Engineering, Standard Scaler, and Hyperparameter Tuning techniques. The method used is CRISP-DM with 6 stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The data used is the price and production of red chili peppers per week in 2018-2023, with a total of 702 records. This research involved 8 trials with data transformation and normalization scenarios. The model evaluation used MSE, RMSE, MAPE, R-squared, and statistical hypothesis testing metrics. Results showed 5 significantly influential attributes: year, month, production, net harvested area, and productivity. The best model yielded MSE 202,134,650, RMSE 14,217, MAPE 29.16%, and R-squared 0.320. This approach is simpler yet effective and is able to provide fairly accurate predictions. This research is expected to contribute to providing predictive models that help farmers and traders anticipate price fluctuations, as well as provide insights for policymakers in price management.
UTILIZING RETRIEVAL-AUGMENTED GENERATION IN LARGE LANGUAGE MODELS TO ENHANCE INDONESIAN LANGUAGE NLP Herdian Tohir; Nita Merlina; Muhammad Haris
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5916

Abstract

The improvement of Large Language Models (LLM) such as ChatGPT through Retrieval-Augmented Generation (RAG) techniques has urgency in the development of natural language translation technology and dialogue systems. LLMs often experience obstacles in addressing special requests that require information outside the training data. This study aims to discuss the use of Retrieval-Augmented Generation (RAG) on large-scale language models to improve the performance of Natural Language Processing (NLP) in Indonesian, which has so far been poorly supported by high-quality data and to overcome the limitations of traditional language models in understanding the context of Indonesian better. The method used is a combination of retrieval capabilities (external information search) with generation (text generation), where the model utilizes broader and more structured basic data through the retrieval process to produce more accurate and relevant text. The data used includes the Indonesian corpus of the 30 Juz Quran translation into Indonesian. The results of the trial show that the RAG approach significantly improves the performance of the model in various NLP tasks, including token usage optimization, text classification, and context understanding, by increasing the accuracy and relevance of the results
ANALYSIS STUDENT EMOTIONS AND MENTAL HEALTH ON CUMULATIVE GPA USING MACHINE LEARNING AND SMOTE Fadhil Muhammad Basysyar; Gifthera Dwilestari; Ade Irma Purnamasari
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5967

Abstract

This research investigates the impact of emotions and mental health on students' cumulative grade point average (CGPA) using machine learning classification algorithms while addressing data imbalances with the Synthetic Minority Oversampling Technique (SMOTE). Emotional well-being and mental health are acknowledged as vital determinants of academic achievement. Data imbalance, particularly in mental health metrics such as anxiety and depression, frequently compromises forecast accuracy. This study improves the accuracy of CGPA prediction based on emotional and mental health factors by utilizing SMOTE in machine learning models such as logistic regression and random forest. A dataset including 226 university students, including academic records and self-reported mental health evaluations, was evaluated. The random forest model attained an accuracy of 87.63%, exceeding the logistic regression model's accuracy of 86.56%. These findings emphasize the significant role of emotions and mental health in academic outcomes and validate SMOTE’s efficacy in addressing class imbalance. This work offers a fresh technique in educational data mining by revealing the possibility for improved academic achievement forecasts based on psychological characteristics, helping to the development of targeted therapies for students experiencing emotional issues. Implications for educational policy emphasize the significance of mental health support systems in promoting academic achievement. Subsequent research should investigate supplementary psychological variables and comprehensible models to improve predictive accuracy and facilitate evidence-based policymaking.
USABILITY EVALUATION OF MOBILE MULTI-FACTOR AUTHENTICATION BASED ON FACE AUTHENTICATION, GEOLOCATION AND QR CODE I Kadek Dendy Senapartha; Matahari Bhakti Nendya
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5970

Abstract

The swift progress of information technology has led to the adoption of mobile-based multi-factor authentication (MFA) systems for attendance management, addressing inefficiencies, security issues, and errors inherent in traditional methods. By utilizing multiple layers of authentication—such as face recognition, geolocation, and QR code scanning—these systems significantly enhance security and reliability. This study evaluates the usability of a mobile MFA system, focusing on user-friendliness and learnability. Two iterations of the system were tested using cognitive walkthrough approaches, chosen for their effectiveness in simulating the experience of new users and identifying usability issues in system learnability. The initial version of the system utilized MobileFaceNet_v2, which had an input size of 112x112. This resulted in a false acceptance rate (FAR) of 0.26, a false rejection rate (FRR) of 0.2, and a half total error rate (HTER) of 0.23. Failures in face verifications and inadequate instructions led to significant user dissatisfaction. In the second iteration, improvements were made by providing better instructions during location and QR scan steps, adding a face capture confirmation screen, and increasing the input size of the face anti-spoof detection model to 224x224. This reduced the FAR to 0.11 but increased the FRR to 0.4, resulting in HTER to 0.25. While these updates improved security, usability issues such as ambiguous user feedback and inadequate instructions persisted. These results emphasize the need for an integrated approach that combines both technological improvements in authentication models and enhancements in UI design to create a more user-friendly experience