cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,956 Documents
Synthesis of the Novel Nanocatalyst of Pt3Mo Nanoalloys on Ti0.8W0.2O2 via Hydrothermal and Microwave-Assisted Polyol Process Anh Tram Ngoc Mai; Nguyen Khanh Pham; Kim Ngan Thi Tran; Van Thi Thanh Ho
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.69928

Abstract

Direct methanol fuel cell (DMFC) attracts much attention due to its high abundance, environmental friendliness, and convenient transportation and storage. In this study, a novel catalyst of Pt3Mo alloy nanoparticles (NPs) on non-carbon Ti0.8W0.2O2  support was synthesized by microwave-assisted polyol process. The characteristic of Pt3Mo NPS/Ti0.8W0.2O2 catalyst was determined by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy-dispersive X-ray (EDX), and Brunauer-Emmett-Teller (BET) method. Pt3Mo NPs had an average diameter of approximate 5.18 nm and were uniformly anchored on Ti0.8W0.2O2 surface. The ratio of Mo in the Pt3Mo alloy was consistent with the theoretical value, which supported the effectiveness of the synthesis method. In addition, Pt3Mo/Ti0.8W0.2O2 electrocatalysts exhibited higher CO-like tolerance in methanol oxidation reaction (MOR) than commercial electrocatalysts, excellent catalytic activity, and strong durability after 2000 cycles. The synergistic effect of Pt-Mo alloy, and the strong interaction between the bimetallic Pt-Mo alloy and the mesoporous Ti0.8W0.2O2 support, could weaken the Pt-CO bond. Besides, the high corrosion resistance and superior electrochemical durability of TiO2-based oxide also contribute to the excellent stability of Pt3Mo/Ti0.8W0.2O2 electrocatalyst in harsh electrochemical media. These results revealed that this material could be a potential catalyst in DMFC technology.
Simple and Green Preparation of ZnO Blended with Highly Magnetic Silica Sand from Parangtritis Beach as Catalyst for Oxidative Desulfurization of Dibenzothiophene Wega Trisunaryanti; Safa Annissa Novianti; Dyah Ayu Fatmawati; Triyono Triyono; Maria Ulfa; Didik Prasetyoko
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.69938

Abstract

Simple and green preparation of ZnO blended with Parangtritis beach sand (BS) catalysts for oxidative desulfurization of dibenzothiophene (ODS-DBT) has been conducted. The ZnO-BS catalysts were prepared by blending ZnO with beach sand under a weight ratio of 1:1, 1:2, and 1:4, and then heated by microwave (MW) at 540 watts for 30 min, resulting in BS-MW, ZnO-MW, ZnO-BS-1-MW, ZnO-BS-2-MW, and ZnO-BS-4-MW, respectively. As a comparison, the ZnO-BS-1 was also heated by oven at 100 °C for 30 min produced ZnO-BS-1-OV. Each product was characterized by XRF, XRD, FTIR, acidity test by NH3 vapor adsorption, SAA, SEM-EDX, TEM, and magneticity test by an external magnetic field. Furthermore, each material was applied for ODS-DBT, and its product was analyzed by UV-Vis spectrophotometer and FTIR. The results showed that ZnO-BS-1-OV had the highest acidity of 2.3486 mmol/g and produced the highest DBT removal efficiency through the ODS reaction of 81.59%. The use of catalysts in ODS-DBT does not affect the main structure of the treated fuel. Therefore, the combination of ZnO with BS can provide good performance in ODS activity and facilitate the separation of catalysts after the reaction due to its magnetic iron oxide content.
Phytochemistry and Biological Activities of Curcuma aeruginosa (Roxb.) Aprilia Permata Sari; Unang Supratman
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.70101

Abstract

Curcuma aeruginosa Roxb. is a stemless, aromatic rhizomatous plant, generally characterized by red corolla lobes, purple calyx, dark purple leaf sheath, purple-brown midrib, and greenish-blue rhizome. This species is usually blooming during the wet and rainy seasons, while the rhizome and leaves have an aromatic odor indicating the presence of volatile constituents. This plant has been used in many traditional medicines as a disinfectant, expectorant, and tonic, including treatment for the wound, diarrhea, dysmenorrhea, fever, coughs, and asthma. This paper aims to provide C. aeruginosa Roxb., summarized data regarding traditional uses, ethnopharmacology, phytochemistry, and pharmacological activities. From 1987 to 2021, about 34 phytochemicals have been isolated, and up to 223 compounds have been detected using Gas Chromatography-Mass Spectrometry. These metabolites differ from flavonoids, terpenoids, steroids, phenanthrenes, and so forth. Furthermore, various investigations demonstrated that the extracts and compounds obtained from the plant possess several pharmacological activities such as anticancer, antioxidant, antimicrobial, anti-dengue, immunostimulant, anthelmintic, anti-inflammatory, antiandrogenic, anti-nociceptive, and antipyretic, as well as uterine relaxant effect. Curcuma aeruginosa Roxb. is a promising medicinal herb and is usually used as oriental traditional medicine by local folks. Therefore, the result supports this plant as a potential source for therapeutic applications and drug development prospects.
Risk Assessment of Toxic Metals from Drinking Water of Taluka Ghorābāri, Sindh, Pakistan Abdul Raheem Shar; Ghulam Qadir Shar; Zulfiqar Ali Jumani; Aslam Khan Pathan; Zubeda Bhatti; Ali Raza Rind; Ghulam Mujtaba Jogi
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.70345

Abstract

In the current study, the quality of groundwater used for drinking purposes was assessed in Taluka Ghorābāri, Sindh, Pakistan. Twenty-five sampling locations were selected for the collection of groundwater. Samples were analyzed for physicochemical and heavy metal analysis, followed by standard methods. Detection of heavy metals was conducted using Atomic Absorption Spectrophotometer. Heavy metals which exceeded the WHO safe limit included Cr (28%), Fe (16%), Mn (48%), and Ni (16%) from the drinking water of the study area. The Cu and Zn were found within the safe limit in all drinking water samples of the study area. The Daily Intake of heavy Metals (DIM) and Health Risk Indexes (HRI) Assessments were calculated to determine risk assessments; the order of mean DIM values was observed as Ni > Cu > Fe > Zn > Cr while HRI was observed in the order of Cu > Mn > Zn > Fe > Cr. The HRI values were observed less than one for both adults and children, which shows the lack of possible health hazards for the people of the study area.
Solubility Enhancement and Characterization of Tamoxifen Citrate Using Co-crystallization Dolih Gozali; Iyan Sopyan; Hairunnisa Hairunnisa; Siska Sari Marvita
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.70891

Abstract

Tamoxifen citrate (TC) is one of the anti-estrogen agents which has low solubility in the water. As TC is still used as the main therapy in breast cancer treatment, modifications are still being made to increase the solubility of TC for a successful treatment. In this research, co-crystallization of TC was performed using Nicotinamide (NIC), Isonicotinamide (ISO), Saccharin (SAC), Aspartame (ASP), and Benzoic Acid (BNZ) as a coformer with the molar ratio of 1:1, 1:2, and 2:1. Co-crystal was prepared by solvent drop grinding (SDG) and solvent evaporation (SE) methods using methanol. The results of the solubility test showed that TC-NIC and TC-ISO co-crystals with a 1:2 molar ratio made using the SDG and SE methods gave the best results. Meanwhile, the best dissolution test results were shown by TC-ISO co-crystals with a ratio of 1:2. Based on the characterization of physical stability, the SDG method resulted in more stable TC co-crystals than the SE method. Therefore, in this case, the SDG method could be more advantageous to be used for development in the field of co-crystallization.
The Optimization of Silica-Based Composite Membrane from Volcanic Ash of Mount Sinabung, Titanium Dioxide, and Polyvinyl Alcohol for River Water Treatment through Photocatalyst Process Moraida Hasanah; Timbangen Sembiring; Zuriah Sitorus; Syahrul Humaidi; Fynnisa Zebua; Rahmadsyah Rahmadsyah
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.70989

Abstract

The application of composite membranes consisting of SiO2 from the volcanic ash of Mount Sinabung, TiO2, and PVA on a laboratory scale has been investigated to improve the Silau River’s water quality in Asahan Regency. The purpose of this study is to determine the optimal combination of SiO2, TiO2, and PVA for treating river water to minimize its heavy metal content and color intensity to achieve clean water requirements. The membranes were prepared by drop-casting with varied compositions of PVA/40TiO2/60SiO2, PVA/60TiO2/40SiO2, PVA/80TiO2/20SiO2, and PVA/100TiO2/0SiO2. PVA was dissolved in aquadest, mixed with SiO2 and TiO2, then imprinted and dried for 24 h at 50 °C. A photocatalyst test was performed on each composition variation to see how the Silau River water’s color changed over time. The PVA/80TiO2/20SiO2 membrane’s composition fluctuated the highest during photocatalyst testing, with 45.95% degradation. The parameter results on the Silau River water test, namely turbidity, color, and chromium values, were reduced by photocatalysis of a PVA/80TiO2/20SiO2 composite membrane to 16 NTU, 30 TCU, and 0.013 mg/L, respectively. These results met the clean water quality criteria specified by Minister of Health of the Republic of Indonesia Decree No. 416/MENKES/PER/IX/1990.
Profiling Metabolites through Chemometric Analysis in Orthosiphon aristatus Extracts as α-Glucosidase Inhibitory Activity and In Silico Molecular Docking Faizal Maulana; Alfari Andiqa Muhammad; Ali Umar; Fachrur Rizal Mahendra; Muhammad Musthofa; Waras Nurcholis
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.71334

Abstract

Orthosiphon aristatus (called kumis kucing in Indonesia) is a valuable herb for diabetes mellitus treatment. In this study, LC-MS/MS and PCA analyses were used to investigate the metabolite profile, classify O. aristatus extracts, and assess the inhibitory activity of a-glucosidase and the probable bioactive compounds through in silico study. Results showed that the methanol and ethanol extracts of O. aristatus were active in α-glucosidase inhibitory activity. Both extracts contained 86 compounds as known from the LC-MS/MS analysis. PCA analysis identified 10 metabolites that correlated with α-glucosidase inhibitory activity. Results of in silico analysis obtained rosmarinic acid compound potentially act as anti-diabetic activity, which can be developed for further research.
Computational Design of Nanobody Binding to Cortisol to Improve Their Binding Affinity Using Molecular Docking and Molecular Dynamics Simulations Umi Baroroh; Nur Asni Setiani; Irma Mardiah; Dewi Astriany; Muhammad Yusuf
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.71480

Abstract

Currently, nanobody binding cortisol has been deposited in the database. Unfortunately, the affinity is still in micromolar order. Substituting hydrophobic residues in the binding pocket and utilizing CDR2 and CDR3 is the strategy to improve the affinity. A single and double substitution at positions 53 and 101 have been introduced to the nanobody structure through molecular modeling. The affinity toward cortisol was evaluated using molecular docking to get the binding pose. The highest binding energy pose was used as the initial coordinate to analyze further using 100 ns molecular dynamics simulations. The binding affinities calculated by MMGBSA showed that MT3, MT5, and MT6 have better binding affinity than WT. In contrast, the ligand movement through MD simulations reveals that MT1, MT3, and MT5 are relatively stable. Hence, docking and MD simulations showed that MT3 is the best mutant than others. This mutant is substituting the threonine to isoleucine at position 53. New hydrophobic interactions occurred and caused the increase of binding. Eventually, this study provides valuable structural information to improve the binding affinity of nanobody binding cortisol for further development of this molecule to antibody-based biosensor design. 
Identification α-Amylase Inhibitors of Vernonia amygdalina Leaves Extract Using Metabolite Profiling Combined with Molecular Docking Norainny Yunitasari; Tri Joko Raharjo; Respati Tri Swasono; Harno Dwi Pranowo
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.71499

Abstract

Vernonia amygdalina was reported to be used as a therapy for Diabetes Mellitus (DM). One of the mechanisms of therapy DM was to inhibit the action of the α-amylase enzyme. This study aimed to prove the presence of compounds that could inhibit the action of α-amylase. Vernonia amygdalina leaves were macerated with methanol and partitioned into n-hexane, dichloromethane (DCM), and ethyl acetate (EtOAc). Furthermore, they were tested for α-amylase inhibitory activity and analyzed using liquid chromatography-high resolutions mass spectrometry (LC-HRMS). Molecular docking and molecular dynamics simulation (MD simulation) examined unique compounds in the extract with good activity and chromatogram results. The EtOAc extracts showed potential as α-amylase inhibitors indicated by their IC50 values, namely 3.0 μg/mL. There are five unique compounds in the EtOAc extract predicted as 3-[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-(2-phenylethyl)benzoic acid (compound 1), 2-hexylpentanedioic acid (compound 2), (2E,4E)-5-[1-hydroxy-2,6-dimethyl-4-oxo-6-({3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] oxy}methyl)cyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid (compound 3), 3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-1-yl)oxy}butyl)cyclohex-2-en-1-one (compound 4), and 2-{[(6E)-2,10-dihydroxy-2,6,10-trimethyldodeca-6,11-dien-3-yl]oxy}-6-(hydroxymethyl)oxane-3, 4,5-triol (compound 5). The molecular docking analysis showed that compound 3 had better interaction energy (Ei) (-8.59 kcal/mol) and inhibition constant (Ki) values (0.503 μM) than acarbose. These data were supported by MD simulations based on the parameters of RMSD value, the radius of gyration, and protein-ligand interaction energy.
Microstructural Analysis and Antibacterial Response of Zn2+/Mg2+ Dual Doped β-Tricalcium Phosphate Bioceramics Ammar Zeidan Alshemary; Huda Basim Qasim; Ali Taha Saleh
Indonesian Journal of Chemistry Vol 22, No 2 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.72286

Abstract

This article evaluates the impact of the addition of zinc (Zn) and magnesium (Mg) on the structural, morphological, and antibacterial characteristics of β-tricalcium phosphates (hereafter called Zn/Mg-βTCP) prepared using the microwave (MW) assisted wet precipitation method in which the Ca deficient apatite [Ca9-(x+y)MgxZny(HPO4)(PO4)5 (OH)] was calcined for 2 h at 1000 °C. The prepared samples were characterized using XRD, FTIR, and FESEM measurements. The XRD patterns of the samples showed a steady decrease in the lattice parameters with an increase in Mg2+ and Zn2+ content. The FESEM images of the samples disclosed the morphological changes due to the Mg2+/Zn2+ co-doping. The inclusion of Mg2+ and Zn2+ into the βTCP was shown to induce excellent bioactivities that were absent in the pristine βTCP. Enhancement, coupled with good antimicrobial properties against Escherichia coli (E. coli), suggests that Mg2+/Zn2+ co-doping TCP can be developed further into antibacterial bone cement. As synthesized, it would be considered a potential biomaterial for orthopedic applications.

Filter by Year

2001 2025


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue