cover
Contact Name
Adi Darmawan
Contact Email
adidarmawan@live.undip.ac.id
Phone
-
Journal Mail Official
jksa@live.undip.ac.id
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
JURNAL KIMIA SAINS DAN APLIKASI
Published by Universitas Diponegoro
ISSN : 14108917     EISSN : 25979914     DOI : -
urnal Kimia Sains dan Aplikasi (p-ISSN: 1410-8917) and e-ISSN: 2597-9914) is published by Department of Chemistry, Diponegoro University. This journal is published four times per year and publishes research, review and short communication in field of Chemistry.
Arjuna Subject : -
Articles 796 Documents
Verification of the Determination Method of Dissolved Metal Content using ICP-OES and Its Application for River Water in Bandar Lampung City Ni Luh Gede Ratna Juliasih; Diky Hidayat; Purna Pirdaus; Rinawati Rinawati
Jurnal Kimia Sains dan Aplikasi Vol 24, No 1 (2021): Volume 24 Issue 1 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3174.471 KB) | DOI: 10.14710/jksa.24.1.29-36

Abstract

Method verification for metal analysis (Cd, Cr, Cu, Ni, Co, and Mn) in surface water using Inductively Coupled Plasma (ICP) was carried out to evaluate the method’s performance in the laboratory-based on US Method EPA 200.7. The verified method is used to determine the metal content in river water flowing in Bandar Lampung. The results showed that the method used had good linearity with a regression coefficient of more than 0.995. This method’s accuracy is expressed by the %RSD (relative standard deviation), which is in the range of 3.145 to 4.345% and meets the acceptance requirements with a %RSD value less than ⅔ CV Horwitz. The method accuracy obtained from the spiking analysis gives a range of 80-110% for the analysis of 1 mg/L and meets the acceptability required by AOAC. Overall, the performance of the method used is suitable for the analysis of metals in surface water. This method was applied for metal analysis in river water samples in several places in Bandar Lampung, which were the Palang Besi river (A1), the Way Balau Kedamaian river (B1), the Way Balau Kedaton river (C1), the Way Kuala river (D1), the Sumur Batu Kahuripan river (E1), Sumur Putri river (F1), and Muara Kahuripan river (G1). The concentrations of Cd, Cr, Cu, Ni, and Co metals were under the LoD method, while the Mn concentration was above the LoD method in river water samples.
Simultaneous Effect of Ultrasonic and Chemical Treatment on the Extraction of Nanocellulose From Sugarcane Bagasse A'yunil Hisbiyah; Lilik Nurfadlilah
Jurnal Kimia Sains dan Aplikasi Vol 24, No 5 (2021): Volume 24 Issue 5 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (34.666 KB) | DOI: 10.14710/jksa.24.5.146-151

Abstract

The focus of this study was the simultaneous effect of ultrasonic and chemical treatment on the extraction of nanocellulose from sugarcane bagasse. Ultrasonic waves can accelerate the dispersion process of nanocellulose particles so that extraction runs faster and is environmentally friendly. The bagasse was treated by chemical treatment with ultrasonic waves, and then the nanocellulose was prepared using acid hydrolysis with ultrasonic waves. The effect of ultrasonication was investigated. The crystallinity of sugarcane bagasse, cellulose, and nanocellulose was analyzed by X-ray diffraction. Based on the diffractogram, there was an increase in the crystallinity of nanocellulose. The chemical composition of extracted cellulose and nanocellulose was analyzed by Fourier-transformed infrared spectroscopy. The results of the analysis showed that lignin and hemicellulose were removed from the bagasse during the extraction process. The analysis results also showed that the breaking of intramolecular hydrogen and glycosidic bonds occurred during the hydrolysis process. The morphology of bagasse, cellulose, and nanocellulose was analyzed by Scanning electron microscopy. While the particle size of nanocellulose was analyzed by the Particle Size Analysis instrument. The average size of nanocellulose particles was 132.67 nm.
Determination of Shelf Life of Herbal Products from the Combination of Stevia rebaudiana, Curcuma zanthorrhiza and Honey (Stekurmin MD) through the Accelerated Shelf Life Test (ASLT) Method Yohanes Martono; Fidelia Novitasari; November Rianto Aminu
Jurnal Kimia Sains dan Aplikasi Vol 23, No 9 (2020): Volume 23 Issue 9 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (51.378 KB) | DOI: 10.14710/jksa.23.9.325-332

Abstract

Stekurmin MD is a syrup preparation formulated from the extract of Stevia rebaudiana leaves, temu lawak (Curcuma zanthorrhiza), and honey. One of the active compounds in Stekurmin MD products is phenolic and flavonoid compounds in which the active phenolic and flavonoid compounds can be degraded during the storage period. This study aimed to determine the shelf life of Stekurmin MD products based on the degradation of phenolic compounds and flavonoids. The Accelerated Shelf Life Test (ASLT) method was used in determining the shelf life kinetics of this product. Phenolic and flavonoid concentrations were determined using the UV-Vis spectrophotometric method with the gallic acid standard for phenolic and quercetin standard for flavonoids. Degradation of phenolic and flavonoid compounds was determined every 7 days during 35 days of storage at 25, 35, 45, and 55°C ± 2°C. In natural ingredients, there is a multi-mechanism reaction. The shelf life of Stekurmin MD products based on the degradation of phenolic and flavonoid active ingredients at room temperature were 39.909 days and 23.53 hours, respectively.
Preparation of Composite Derived from Banana Peel Activated Carbon and MgFe2O4 as Magnetic Adsorbent for Methylene Blue Removal Arie Hardian; Rosi Rosidah; Senadi Budiman; Dani Gustaman Syarif
Jurnal Kimia Sains dan Aplikasi Vol 23, No 12 (2020): Volume 23 Issue 12 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3735.943 KB) | DOI: 10.14710/jksa.23.12.440-448

Abstract

Methylene blue (MB) is one of the dyes used often by the textile industry. Therefore, MB residual is contained in the textile industry waste. MB can irritate, leading to permanent eye and animal injuries; therefore, the textile industry waste concentration must be degraded before disposed to the environment. MB residual in textile industry waste can be treated with activated carbon adsorption. However, the adsorption method is less effective because the deposition takes a long time. This research aims to make activated carbon composites from banana peels and magnesium ferrite (BPAC/MgFe2O4) using the coprecipitation method to obtain activated carbon with magnetic properties (magnetic adsorbent). The obtained composite was characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-Ray (EDX), and Surface Area Analyzer. The adsorption performance of methylene blue on composites was evaluated with variations in pH, concentration, contact time, determination of adsorption isotherms, and kinetics of adsorption. XRD analysis results showed the composite has a cubic crystal structure with a crystallite size of 7.69 nm. SEM analysis results show the surface morphology has pores with irregular shapes. EDX analysis results showed that the composition of activated carbon composite was 65.56% carbon, 2.28% Mg, 5.50% Fe, and 26.66% O. The results surface area analysis showed a composite surface area of 88.134 m2/g. Composite adsorption performance showed maximum results at pH 7, variations in concentration at 10 ppm, and contact time 180 minutes with adsorption capability of 99.26%. Determination of the adsorption isotherm follows the Freundlich adsorption isotherm model with a pseudo-second-order adsorption kinetics model. The obtained BPAC/MgFe2O4 composite can potentially be a magnetic adsorbent capable of adsorbing methylene blue in an aqueous solution.
Stigmasterol and Stigmasterone from Methanol Extract of Calophyllum soulattri Burm. F. Stem Bark Surya Dewi Marliyana; Fajar Rakhman Wibowo; Desi Suci Handayani; Triana Kusumaningsih; Venty Suryanti; Maulidan Firdaus; Ema Nur Annisa
Jurnal Kimia Sains dan Aplikasi Vol 24, No 4 (2021): Volume 24 Issue 4 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2478.986 KB) | DOI: 10.14710/jksa.24.4.108-113

Abstract

Stigmasterol and Stigmasterone from Methanol Extract of Calophyllum soulattri Burm. F. Stem Bark. Calophyllum soulattri Burm. F. has been widely used for herbal medicine. Phytochemical investigation of C. soulattri contains a secondary metabolite of the steroid class. Steroid compounds have various biological activities, such as anti-inflammatory, antioxidant, antiproliferative, antibacterial, antimalarial, and anticancer. Two secondary metabolites steroids have been isolated and identified from the stem bark extract of C. soulattri. Isolation was carried out through the extraction (maceration), fractionation, and purification stages. Maceration is carried out using methanol as a solvent. Fractionation was carried out by vacuum liquid chromatography (VLC), and purification was by flash column chromatography. Identification of combined fractions and determination of pure isolates were used through thin-layer chromatography (TLC). The solvent used in the chromatography methods was a mixture of n-hexane and ethyl acetate. The structure isolates were identified by FTIR, 1H NMR, and 13C NMR and compared with literature data. Secondary metabolites steroids that have been isolated are identical compounds to stigmasterol and stigmasterone.
Synthesis of Sodium Lauryl Sulfate (SLS) and Hexadecyltrimethylammonium Bromide (HDTMA-Br) Surfactant-Modified Activated Carbon as Adsorbent for Pb2+ and NO3- Arnelli Arnelli; Rahmatul Fazira; Yayuk Astuti; Ahmad Suseno
Jurnal Kimia Sains dan Aplikasi Vol 23, No 11 (2020): Volume 23 Issue 11 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2977.337 KB) | DOI: 10.14710/jksa.23.11.396-402

Abstract

The adsorption efficiency and selectivity of activated carbon as an adsorbent for ions can be improved. One way is to convert activated carbon into surfactant modified activated carbon (SMAC). The surfactants used in this study were the anionic surfactant Sodium Lauryl Sulfate (SLS) and the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br). This research aims to synthesize SMAC to obtain a material with a surface charge and absorb ions better than activated carbon. This research consisted of four stages. The first step was the carbonization of rice husks using a pyrolysis reactor at 400°C for 1 hour. The second stage was carbon activation using 30% ZnCl2 and microwave radiation for 5 minutes and 400 W. The third stage was the modification of activated carbon and characterization by FTIR, SEM, SAA. The fourth stage was the adsorption of Pb cations and nitrate anions by carbon, activated carbon, and SMAC. Several variables were applied, such as the type of surfactant, time, and method of modification. There are three ways of modification: (1) method A, in which activated carbon is brought into contact with SLS then HDTMA-Br. (2) Method B in which activated carbon was contacted with HDTMA-Br then SLS. (3) Method C in which activated carbon was brought into contact with SLS together with HDTMA-Br. All variables were investigated. The results showed that the optimum time for making SMAC for both surfactants was 4 hours, the optimum concentrations of SLS and HDTMA-Br were 60 and 300 ppm, respectively. SMAC made by the C method was the most effective at adsorbing Pb2+ and NO3- with adsorption capacities of 1.376 and 0.896 mg/g, respectively. The success of SMAC synthesis was evidenced by the S=O and (CH3)3N+ groups in the FTIR spectra. The SMAC surface area is smaller than activated carbon, 14.472 m2/g, but the surface morphology is smoother and more homogeneous.
Antimicrobial Activities of Synthesized Silver Nanoparticles using Ethanol and Water Extract of Mirabilis Jalapa Tunas Alam; Frida Octavia Purnomo; Asbar Tanjung
Jurnal Kimia Sains dan Aplikasi Vol 24, No 3 (2021): Volume 24 Issue 3 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3116.302 KB) | DOI: 10.14710/jksa.24.3.70-76

Abstract

The focus of this study was to compare the antimicrobial activity of silver nanoparticles (AgNPs) synthesized using ethanol extracts (AgNPE) and water extracts (AgNPA) from four o’clock flowers (Mirabilis jalapa) against Staphylococcus aureus. AgNPs were characterized by UV-Vis diffraction, FTIR, SEM, and X-rays. UV-Vis analysis showed that AgNPA has an SPR band of about 460 nm and 530 nm for AgNPE, which proves the characteristics of the absorbance area of AgNPs. SEM images of AgNPE and AgNPA show a cuboid shape with a mean diameter of 80 and 30 nm, respectively and well dispersed. The response to the presence of polysaccharide biomolecules involved in forming AgNPs was analyzed using a Fourier transform infrared spectrometer. The result was that AgNPA and AgNPE have different reducing agents. The plant extracts, AgNPE and AgNPA, were studied for their antimicrobial activity against Staphylococcus aureus. The result was that both AgNPA and AgNPE showed good activity and showed that AgNPA with less inhibition was more effective than AgNPE.
Synthesis and Characterization of SiO2/ZnO Nanocomposites from Zinc Waste and Mount Merapi Volcanic Ash Sunardi Sunardi; Silviana Silviana
Jurnal Kimia Sains dan Aplikasi Vol 23, No 10 (2020): Volume 23 Issue 10 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2342.508 KB) | DOI: 10.14710/jksa.23.10.365-369

Abstract

Research on the synthesis and characterization of SiO2/ZnO nanocomposites from zinc waste and Mount Merapi volcanic ash has been carried out. The semiconductor used was ZnO using a SiO2 as the host material. The use of SiO2 was due to its high efficiency and abundant raw materials. This is because the eruption of Mount Merapi occurs regularly every four years. Apart from the abundant presence of SiO2, the source of ZnO from lathe workshop waste is also easy to obtain. The research aims to reduce the volume of zinc waste from the lathe and volcanic ash, which was not optimized. Zinc waste and volcanic ash were synthesized into nanocomposites. Then the obtained nanocomposites were characterized to determine their effectiveness in degrading various wastes. The synthesis of SiO2/ZnO nanocomposites was carried out using the sol-gel method as easy and highly effective. The method used is to transform zinc waste into Zn(OH)2. The volcanic ash was extracted with KOH to form potassium silicate (K2SiO3). Zn(OH)2, (K2SiO3) and HCl were reacted together when sonicated, then calcined at 550°C. The results showed that SiO2/ZnO nanocomposites made from volcanic ash and zinc waste produced composite sizes with a size range of 100-200 nm and a uniform circular shape. FTIR analysis results show that SiO has the peaks at wavenumbers of 993.34 and 1109.07 cm-1, while the ZnO peak is at wavenumbers of 443.63 cm-1. The XRD diffractogram of SiO2/ZnO nanocomposites shows peaks at 2θ of 30.42°, 31.56°, and 44.40°.
Rice Husk Demineralization: Effect of Washing Solution on Its Physicochemical Structure and Thermal Degradation Hesti Wijayanti; Iryanti Fatyasari Nata; Chairul Irawan; Rinny Jelita
Jurnal Kimia Sains dan Aplikasi Vol 24, No 2 (2021): Volume 24 Issue 2 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2585.422 KB) | DOI: 10.14710/jksa.24.2.37-42

Abstract

Generally, biomass consists of various amounts of minerals. These minerals influence the biomass characteristics and behavior during their use in a thermochemical process such as pyrolysis. The conversion during pyrolysis and its final product will be affected. This research was carried out to study the impact of washing treatment in water and acid solutions on the rice husk as the raw material for pyrolysis. Also, the effect of acid strength (citric acid as the weak acid while nitric acid as the strong acid) and its concentration (1, 5, and 10 wt.%) was investigated. The results confirmed from the thermogravimetry (TGA/DTG) analysis, surface analysis (SEM), and spectra (FTIR) analysis describe the treatment using water caused less change on the rice husk surface structure and its thermal degradation. However, it seems hard to reduce the minerals (proved from XRF analysis). Meanwhile, the treatment using acids solution resulted in lower mineral composition than the rice husk without treatment. This result is more visible for demineralization using a 5 wt.% nitric acid solution. However, for a higher concentration (washing treatment using 10 wt.% solutions of nitric acid), the degradation on rice husk structure was more occurred.
Molecular Cloning and Expression of Haloacid Dehalogenase Gene from a Local Pseudomonas aeruginosa ITB1 Strain and Tertiary Structure Prediction of the Produced Enzyme Enny Ratnaningsih; Lousiana Dwinta Utami; Nurlaida Nurlaida; Rindia Maharani Putri
Jurnal Kimia Sains dan Aplikasi Vol 24, No 5 (2021): Volume 24 Issue 5 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3416.342 KB) | DOI: 10.14710/jksa.24.5.161-169

Abstract

Organohalogens are widely utilized as pesticides, herbicides, solvents, and for many other industrial purposes. However, the use of these compounds caused some negative impacts to the environment due to their toxicity and persistency. In the light of this, some microbes have been identified and employed to perform dehalogenation, converting halogenated organic compounds to non-toxic materials. In this research, we successfully cloned and sequenced the haloacid dehalogenase gene from a local Pseudomonas aeruginosa ITB1 strain, which is involved in the degradation of monochloroacetate. First, the haloacid dehalogenase gene was amplified by PCR using a pair of primers designed from the same gene sequences of other P. aeruginosa strains available in the GenBank. The cloned gene in pGEM-T in E. coli TOP10 was sequenced, analyzed, and then sub-cloned into pET-30a(+) for expression in E. coli BL21 (DE3). To facilitate direct sub-cloning, restriction sequences of EcoRI (G/AATTC) and HindIII (A/AGCTT) were added to the forward and reversed primers, respectively. The expressed protein in E. coli BL21 (DE3) appeared as a 26-kDa protein in SDS-PAGE analysis, which is in good agreement with the size predicted by ExPASy Protparam. We obtained that the best expression in LB liquid medium was achieved with 0.01 mM IPTG induction at 30°C incubation for 3 hours. We also found that the enzyme is more concentrated in the pellet cells as inclusion bodies. Furthermore, the in-silico analysis revealed that this enzyme consists of 233 amino acid residues. This enzyme’s predicted tertiary structure shows six β-sheets flanked by α-helixes and thus belongs to Group II haloacid dehalogenase. Based on the structural prediction, amino acid residues of Asp7, Ser121, and Asn122 are present in the active site and might play essential roles in catalysis. The presented study laid the foundation for recombinant haloacid dehalogenase production from P. aeruginosa local strains. It provided an insight into the utilization of recombinant local strains to remediate environmental problems caused by organohalogens.

Filter by Year

1998 2025


Filter By Issues
All Issue Vol 28, No 8 (2025): Volume 28 Issue 8 Year 2025 Vol 28, No 7 (2025): Volume 28 Issue 7 Year 2025 Vol 28, No 6 (2025): Volume 28 Issue 6 Year 2025 Vol 28, No 5 (2025): Volume 28 Issue 5 Year 2025 Vol 28, No 4 (2025): Volume 28 Issue 4 Year 2025 Vol 28, No 3 (2025): Volume 28 Issue 3 Year 2025 Vol 28, No 2 (2025): Volume 28 Issue 2 Year 2025 Vol 28, No 1 (2025): Volume 28 Issue 1 Year 2025 Vol 27, No 12 (2024): Volume 27 Issue 12 Year 2024 Vol 27, No 11 (2024): Volume 27 Issue 11 Year 2024 Vol 27, No 10 (2024): Volume 27 Issue 10 Year 2024 Vol 27, No 9 (2024): Volume 27 Issue 9 Year 2024 Vol 27, No 8 (2024): Volume 27 Issue 8 Year 2024 Vol 27, No 7 (2024): Volume 27 Issue 7 Year 2024 Vol 27, No 6 (2024): Volume 27 Issue 6 Year 2024 Vol 27, No 5 (2024): Volume 27 Issue 5 Year 2024 Vol 27, No 4 (2024): Volume 27 Issue 4 Year 2024 Vol 27, No 3 (2024): Volume 27 Issue 3 Year 2024 Vol 27, No 2 (2024): Volume 27 Issue 2 Year 2024 Vol 27, No 1 (2024): Volume 27 Issue 1 Year 2024 Vol 26, No 12 (2023): Volume 26 Issue 12 Year 2023 Vol 26, No 11 (2023): Volume 26 Issue 11 Year 2023 Vol 26, No 10 (2023): Volume 26 Issue 10 Year 2023 Vol 26, No 9 (2023): Volume 26 Issue 9 Year 2023 Vol 26, No 8 (2023): Volume 26 Issue 8 Year 2023 Vol 26, No 7 (2023): Volume 26 Issue 7 Year 2023 Vol 26, No 6 (2023): Volume 26 Issue 6 Year 2023 Vol 26, No 5 (2023): Volume 26 Issue 5 Year 2023 Vol 26, No 4 (2023): Volume 26 Issue 4 Year 2023 Vol 26, No 3 (2023): Volume 26 Issue 3 Year 2023 Vol 26, No 2 (2023): Volume 26 Issue 2 Year 2023 Vol 26, No 1 (2023): Volume 26 Issue 1 Year 2023 Vol 25, No 12 (2022): Volume 25 Issue 12 Year 2022 Vol 25, No 11 (2022): Volume 25 Issue 11 Year 2022 Vol 25, No 10 (2022): Volume 25 Issue 10 Year 2022 Vol 25, No 9 (2022): Volume 25 Issue 9 Year 2022 Vol 25, No 8 (2022): Volume 25 Issue 8 Year 2022 Vol 25, No 7 (2022): Volume 25 Issue 7 Year 2022 Vol 25, No 6 (2022): Volume 25 Issue 6 Year 2022 Vol 25, No 5 (2022): Volume 25 Issue 5 Year 2022 Vol 25, No 4 (2022): Volume 25 Issue 4 Year 2022 Vol 25, No 3 (2022): Volume 25 Issue 3 Year 2022 Vol 25, No 2 (2022): Volume 25 Issue 2 Year 2022 Vol 25, No 1 (2022): Volume 25 Issue 1 Year 2022 Vol 24, No 7 (2021): Volume 24 Issue 7 Year 2021 Vol 24, No 6 (2021): Volume 24 Issue 6 Year 2021 Vol 24, No 5 (2021): Volume 24 Issue 5 Year 2021 Vol 24, No 4 (2021): Volume 24 Issue 4 Year 2021 Vol 24, No 3 (2021): Volume 24 Issue 3 Year 2021 Vol 24, No 2 (2021): Volume 24 Issue 2 Year 2021 Vol 24, No 1 (2021): Volume 24 Issue 1 Year 2021 Vol 23, No 12 (2020): Volume 23 Issue 12 Year 2020 Vol 23, No 11 (2020): Volume 23 Issue 11 Year 2020 Vol 23, No 10 (2020): Volume 23 Issue 10 Year 2020 Vol 23, No 9 (2020): Volume 23 Issue 9 Year 2020 Vol 23, No 8 (2020): Volume 23 Issue 8 Year 2020 Vol 23, No 7 (2020): Volume 23 Issue 7 Year 2020 Vol 23, No 6 (2020): Volume 23 Issue 6 Year 2020 Vol 23, No 5 (2020): Volume 23 Issue 5 Year 2020 Vol 23, No 4 (2020): Volume 23 Issue 4 Year 2020 Vol 23, No 3 (2020): Volume 23 Issue 3 Year 2020 Vol 23, No 2 (2020): Volume 23 Issue 2 Year 2020 Vol 23, No 1 (2020): Volume 23 Issue 1 Year 2020 Vol 22, No 6 (2019): Volume 22 Issue 6 Year 2019 Vol 22, No 5 (2019): Volume 22 Issue 5 Year 2019 Vol 22, No 4 (2019): Volume 22 Issue 4 Year 2019 Vol 22, No 3 (2019): Volume 22 Issue 3 Year 2019 Vol 22, No 2 (2019): Volume 22 Issue 2 Year 2019 Vol 22, No 1 (2019): volume 22 Issue 1 Year 2019 Vol 21, No 4 (2018): volume 21 Issue 4 Year 2018 Vol 21, No 3 (2018): Volume 21 Issue 3 Year 2018 Vol 21, No 2 (2018): Volume 21 Issue 2 Year 2018 Vol 21, No 1 (2018): Volume 21 Issue 1 Year 2018 Vol 20, No 3 (2017): Volume 20 Issue 3 Year 2017 Vol 20, No 2 (2017): Volume 20 Issue 2 Year 2017 Vol 20, No 1 (2017): Volume 20 Issue 1 Year 2017 Vol 19, No 3 (2016): Volume 19 Issue 3 Year 2016 Vol 19, No 2 (2016): Volume 19 Issue 2 Year 2016 Vol 19, No 1 (2016): Volume 19 Issue 1 Year 2016 Vol 18, No 3 (2015): Volume 18 Issue 3 Year 2015 Vol 18, No 2 (2015): Volume 18 Issue 2 Year 2015 Vol 18, No 1 (2015): Volume 18 Issue 1 Year 2015 Vol 17, No 3 (2014): Volume 17 Issue 3 Year 2014 Vol 17, No 2 (2014): Volume 17 Issue 2 Year 2014 Vol 17, No 1 (2014): Volume 17 Issue 1 Year 2014 Vol 16, No 3 (2013): Volume 16 Issue 3 Year 2013 Vol 16, No 2 (2013): Volume 16 Issue 2 Year 2013 Vol 16, No 1 (2013): Volume 16 Issue 1 Year 2013 Vol 15, No 3 (2012): Volume 15 Issue 3 Year 2012 Vol 15, No 2 (2012): Volume 15 Issue 2 Year 2012 Vol 15, No 1 (2012): Volume 15 Issue 1 Year 2012 Vol 14, No 3 (2011): Volume 14 Issue 3 Year 2011 Vol 14, No 2 (2011): Volume 14 Issue 2 Year 2011 Vol 14, No 1 (2011): Volume 14 issue 1 Year 2011 Vol 13, No 3 (2010): Volume 13 Issue 3 Year 2010 Vol 13, No 2 (2010): Volume 13 Issue 2 Year 2010 Vol 13, No 1 (2010): Volume 13 Issue 1 Year 2010 Vol 12, No 3 (2009): Volume 12 Issue 3 Year 2009 Vol 12, No 2 (2009): Volume 12 Issue 2 Year 2009 Vol 12, No 1 (2009): Volume 12 Issue 1 Year 2009 Vol 11, No 3 (2008): Volume 11 Issue 3 Year 2008 Vol 11, No 2 (2008): Volume 11 Issue 2 Year 2008 Vol 11, No 1 (2008): Volume 11 Issue 1 Year 2008 Vol 10, No 3 (2007): Volume 10 Issue 3 Year 2007 Vol 10, No 2 (2007): Volume 10 Issue 2 Year 2007 Vol 10, No 1 (2007): Volume 10 Issue 1 Year 2007 Vol 9, No 3 (2006): Volume 9 Issue 3 Year 2006 Vol 9, No 2 (2006): Volume 9 Issue 2 Year 2006 Vol 9, No 1 (2006): Volume 9 Issue 1 Year 2006 Vol 8, No 3 (2005): Volume 8 Issue 3 Year 2005 Vol 8, No 2 (2005): Volume 8 Issue 2 Year 2005 Vol 8, No 1 (2005): Volume 8 Issue 1 Year 2005 Vol 7, No 3 (2004): Volume 7 Issue 3 Year 2004 Vol 7, No 2 (2004): Volume 7 Issue 2 Year 2004 Vol 7, No 1 (2004): Volume 7 Issue 1 Year 2004 Vol 6, No 3 (2003): Volume 6 Issue 3 Year 2003 Vol 6, No 2 (2003): Volume 6 Issue 2 Year 2003 Vol 6, No 1 (2003): Volume 6 Issue 1 Year 2003 Vol 5, No 3 (2002): Volume 5 Issue 3 Year 2002 Vol 5, No 2 (2002): Volume 5 Issue 2 Year 2002 Vol 5, No 1 (2002): Volume 5 Issue 1 Year 2002 Vol 3, No 3 (2000): Volume 3 Issue 3 Year 2000 Vol 3, No 2 (2000): Volume 3 Issue 2 Year 2000 Vol 3, No 1 (2000): Volume 3 Issue 1 Year 2000 Vol 2, No 4 (1999): Volume 2 Issue 4 Year 1999 Vol 2, No 3 (1999): Volume 2 Issue 3 Year 1999 Vol 2, No 2 (1999): Volume 2 Issue 2 Year 1999 Vol 2, No 1 (1999): Volume 2 Issue 1 Year 1999 Vol 1, No 1 (1998): Volume 1 Issue 1 Year 1998 More Issue