cover
Contact Name
Agri Suwandi
Contact Email
asiimetrik@univpancasila.ac.id
Phone
+628129683716
Journal Mail Official
asiimetrik@univpancasila.ac.id
Editorial Address
Fakultas Teknik Universitas Pancasila Jalan Srengseng Sawah, Kec. Jagakarsa, Kota Jakarta Selatan, Jakarta Selatan - 12640
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi
Published by Universitas Pancasila
ISSN : 26551861     EISSN : 27162923     DOI : https://doi.org/10.35814
Jurnal ini mempublikasikan artikel ilmiah berbasis penelitian, studi kasus, articles review, rekayasa dan inovasi yang mencakup teoritis maupun praktis serta pengembangannya. Topik artikel ilmiah yang dimuat ASIIMETRIK mencakup bidang Arsitektur, Teknik Sipil, Teknik Industri, Teknik Informatika, Teknik Mesin dan Teknik Elektro.
Articles 21 Documents
Search results for , issue "Volume 6 Nomor 2 Tahun 2024" : 21 Documents clear
The Effect of Rotation Speed on the Quality of Friction Welding Joints in Aluminum and Copper Santoso, Habibi; Surahto, Aep; Ekawati, Fatimah Dian
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.5773

Abstract

Welding of two different materials has high difficulty. It will cause porosity and hot cracks. To improve this, a friction welding (FRW) process has been developed to weld materials in a molten state. In this process, the material will be clamped so as not to be thrown, one other material will be rotated and brought together with the other clamped material and the pressure that causes the two sides of the material to meet. The purpose of this study is to determine the strength of welded joints of various materials through tensile testing and microstructure testing in friction welding (FRW) welding. This study used 6061 aluminium and ASTM B187 copper for welding. The cylinder had a diameter of 16 millimetres and a length of 70 millimetres, and the spindle rotational speeds were 1200 rpm, 1400 rpm and 1800 rpm. Welding results were assessed by measuring the strength of weld joints between different types of materials. Test results on welding with different spindle rotational speeds showed that friction welding with 1800 rpm was stronger with a maximum tensile strength of 2762.8 N and a tensile strength of 13.7N/mm2 when compared to 1200 rpm and 1400 rpm. In testing the microstructure of different types of materials, it can be seen that the mixture of the two metals at a rotational speed of 1800 rpm is more melting, so that the unification of the joining of the two materials is better when compared to the rotational speed of 1200 rpm and 1400 rpm.
Evaluating Wind Deflector Effect on Cargo Vans Aerodynamic Drag Using Computational Fluid Dynamics Agus Fikri; Ariyansah, Riyan; Firman Noor Hasan; Oktarina Heriyani; Rosalina; Sistani, Muhammad Ghiffar
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6073

Abstract

Suboptimal design and body shape in freight transport vehicles can lead to increased aerodynamic drag. To address this issue, the use of wind deflectors is proposed as a solution to reduce aerodynamic resistance in cargo vans. The methodology employed in this research involves Computational Fluid Dynamics (CFD) simulations using the Ansys Fluent R2 2023 software. CFD simulations were conducted on the design of a cargo box vehicle with variations in Wind Deflector Models 1, 2, and 3, employing identical boundary condition parameters. The results of the CFD simulation for Wind Deflector Model 3 exhibited the lowest drag force at 1.1531116 Newton and a drag coefficient of 0.37031338. In conclusion, a comprehensive analysis of the CFD simulation results provides valuable insights into the intricate aerodynamic implications of Wind Deflector variations on cargo vans. Therefore, it is concluded that Wind Deflector Model 3 emerges as the optimal choice, showcasing superior aerodynamic characteristics.
Design of Rejection Subsystem for Abnormal Workpiece Condition Modular Production System at Distribution Station Ichsan, Christopher Adryan; Irawan, Agustinus Purna; Halim, Agus; Utama, Didi Widya; Panie, William Dae; Tolukun, Bright Levin
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6144

Abstract

In the industrial era 4.0, the automation system technology used is growing rapidly. Automation systems in the industry are very useful, especially in reducing production time. One of the tools that can be used to simulate production in an industry is the Modular Production System (MPS). MPS itself consists of several stations to simulate the production process on a small scale. In a production system, of course, a system is needed that can detect abnormal workpiece conditions. This system will be driven by a Programmable Logic Controller (PLC). This system will be placed at the distribution station. The rejection system in MPS is needed because, in MPS there is still a manual process, namely in the process of inserting workpieces into the stack magazine. with this manual process, it is likely that workpieces with abnormal conditions will be processed by MPS. This condition is unlikely to be processed further to the pick and place station. Therefore, objects with abnormal conditions must be separated by this rejection system. There are 2 methods used to conduct this research, namely using the 5/3 valve and the positive stop method. Data collection from both methods is done by experiment. From the experimental results of the two methods, it can be seen that the best method used for this system is the positive stop method. This method is the most appropriate method because it can produce a very accurate swivel arm stop position. From the data obtained, using the 5/3 valve method with a pressure of 4 bar the swivel arm stop position ranges from 22.4 cm to reach more than 25.8 cm, and at a pressure of 5 bar the swivel arm height ranges from 25.8 cm to more. By using the positive stop method the swivel arm stops exactly at the specified swivel arm height because the swivel arm is held by the pneumatic cylinder.
Experimental and Numerical Testing of Jaw Gripper Design Using The Mass Reduction Method of Onyx-Carbon Fiber Material at PT. Matahari Megah Santoso, Yudha; Halim, Agus; Utama, Didi Widya; Raynaldo, Kevin
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6147

Abstract

A robot arm is a robot component in the motion subsystem of a robot system to determine the position and orient the object so that the robot can perform certain tasks, such as picking and placing an object. To use it as a pick and place, a gripper shaped like a human finger, commonly called a jaw gripper, is required, which is used to hold, tighten, hold, and release an object. The shape of the jaw gripper is designed and made according to the shape of the workpiece to be grasped, which was created by PT Matahari Megah using the 3D-printing method for its customer. The jaw gripper that has been designed still needs to be developed to produce a more optimal jaw gripper design, such as by reducing the use of excessive filament without reducing quality and minimizing costs incurred. Therefore, a more optimized jaw gripper test tool was made with a material reduction method using the generative design process in Inventor software, and physical testing was carried out on the ability to grip and deflection, compared to the testing process using a test system that had been designed with a dial gauge measuring instrument. The results of the comparison between the Inventor software results and the simulation results do not exceed 10%, with the difference at a pressure of 2 bars of 7% and the difference at a pressure of 4.6/5 bars of 1.87%.
Flow Investigation Inside the Vacuum Gripper for Labeling Application with Dimensions of 100 mm × 100 mm Using the CFD Method Setiawan, Eric Budiono; Halim, Agus; Darmawan, Steven; Utama, Didi Widya; Raynaldo, Kevin
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6160

Abstract

Nowadays, the application of automation in the manufacturing sector is important to increase production efficiency. One of the variations in industrial automation is the vacuum gripper. Vacuum grippers are specifically designed to handle specific workpieces, such as labeling application. Label characteristics that easily bend and stick to the workpiece when peeled off require a specific gripper. This research was carried out using 2 methods, experimental method and CFD simulation method. The experimental method was carried out by collecting pressure data with Arduino. Data from this experiment will be used for the CFD simulation. Based on these experimental tests, the average vacuum pressure obtained was -44.372 kPa. From the simulation vacuum pressure on the 12 inlet holes was obtained. The largest vacuum pressure was at inlet 12 with a vacuum pressure value of -44372.11 Pa, while the smallest was at inlet hole 1 with a value of -44371.86 Pa. The pressure distribution is evenly distributed at all the suction point and has suited the design requirements.
Design and Optimizing Top Cover Feeding Unit Modular Production System and Pick & Place Station Napoleon, Emanoelle; Halim, Agus; Utama, Didi Widya; Irawan, Agustinus Purna; Waworuntu, Jason
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6176

Abstract

Modular Production System is a station unit consisting of industrial components in the form of pneumatic and electrical components controlled by a Programmable Logic Controller which is directed for industry-oriented vocational training. In a Modular Production System, there are several types of stations, one of which is the pick and place station which consists of two modules, namely the pick and place module and the conveyor module. This design discusses the optimization of the design of the top cover feeding unit at the pick and place station because the top cover is dislocated every time there is a change in position when the vacuum sucks the top cover. This design optimization is done by redesigning the feeding unit slider. By doing this optimization, it can make the feeding unit accommodate the top cover where it should be and improve the process capability of the system. The results of this optimization are determined based on the process capability values, before optimization the resulting values were 1.0417 for Capabiity Process and 0.77 for the index. Then after design optimization, the values are 3.402 for Capabilty Process and 6.396 for the index and produce a total force of 0.205 N by using a slider feeding unit tilt angle of 14o. This tilt angle was determined as the most optimal angle because it resulted in the least system failure.
The Development of Conceptual Design of Nurse assistance Robot’s Exterior with Ergonomic Approach Dwinandana, Tubagus Ahmad; Kasih, Tota Pirdo; Puji, Muhammad Nurul
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6320

Abstract

Nurses are human resources who have an important role in medical installations, especially hospitals. Nurses have various tasks such as assisting doctors in examining, treating and serving patients, and other tasks such as administration. With these various tasks, physical and mental fatigue often occurs in nurses. To reduce the workload, robots have been used in hospitals around the world, especially in hospitals in Indonesia. This research aims to produce an initial concept for the exterior design of a nursing assistant robot using an ergonomics approach. The research methodology uses product design and development framework, especially in conceptual design process which start from customer needs identification to design iteration. From the research it can be concluded that determining robot dimensions is based on anthropometric standards, user posture, hardware size, and so on. The main consideration in determining the size of the robot is the reach of the hand to pick up and store items, the range of the eye to see the interactive display screen.
Characteristics of Multi-tier Hybrid Dryer for Drying Corn Grains Allo, Rombe; Pongsapan, Allo Sarira; Mangallo, David; Agustinus; Siregar, Samuel Parlindungan; Pagasis, Thomas; Werdhani, Anastasia Sri; Numberi, Johni Jonatan; Palamba, Pither; Banda, Dionisius Desriadi; Joni
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6370

Abstract

The type of drying device known as a hybrid dryer is a tool that harnesses solar energy and the heat generated by a biomass fuel-powered heat exchanger. This study was conducted to assess the performance of the hybrid dryer by analyzing the parameters of the device itself and the dried material. The research was carried out experimentally using a solar collector and a biomass furnace (as a heat exchanger) to heat the air. The solar collector used consists of 0.35 mm thick, black-painted zinc, coated with 5 mm thick glass, and installed at a 20-degree angle. The heat exchanger pipe used has a diameter of 1.25 inches and is made of galvanized pipe. The tested sample is corn seeds with an initial moisture content of about 24.6%. The experimental results show that in the drying process using a solar dryer, the initial moisture content of 24.8% was successfully reduced to 14% at 5.50 h (rack 1), 6.50 h (rack 2) and 7.00 h (rack 3) with a thermal efficiency of 24.25%. Meanwhile, in the hybrid drying process, the required time is approximately 5.00 h (rack 1), 5.50 h (rack 2) and 6.00 h (rack 3), with a efficiency of the drying equipment used is 21.048±5.690% (hybrid) and 22.706±6.437% (solar).
New Approach on Planning for Water Provision using Water Balance (Case Study: Sewakaderma Municipal Waterworks, Denpasar) Rahman, Herawati Zetha
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6553

Abstract

The rapid growth of urban populations has led to an increase in water demand. Moreover, Public Water Supply Companies need to deal with water loss. This issue is primarily caused by aging water networks and poor infrastructure due to a lack of maintenance, which makes the piping system susceptible to damage and leakage. In Denpasar City, the pipeline network, which spans over 94,753 meters, is more than 40 years old. Given the current circumstances, in 2023 the amount of unaccounted water loss due to leakage reach 38%. This high percentage of Non-Revenue Water (NRW) has several negative consequences, including a decrease in the quality of distributed water, a reduction in PDAM profits, and limitations on the city government's ability to expand and achieve 100% coverage. The objective of this study is to estimate the potential demand and supply of PDAM Denpasar City. Using Quantitative and qualitative approach, with minimum water demand of 129.46 liters per person per day (lpd). The Water Supply Simulation of Denpasar City reveals that to achieve optimal conditions, PDAM Denpasar City must reduce NRW from 38% to 19.5% by 2044. This can be accomplished through various measures, including the replacement of the Primary Distribution Network along 116.95 kilometers, replacement of 51.03 kilometers Secondary Distribution Network, the installation of 78 District Metered Areas (DMAs), and an increase in the number of customers by at least 20,750 households (representing a 22% increase from 2023).
Analysis of Natural Convection Heat Transfer in Barapen Cooking in Papua Numberi, Johni Jonathan; Palamba, Pither; Giai, Agustinus; Rumar, Kristofel; Joni; Ansanay, Yane; Ranteallo, Obet T.; Siregar, Samuel P.; Kaiwai, Ruben M.; Rantepulung, Selyus; Werdani, Anastasia Sri; Griapon, Nourish; Wanane, Yohanis; Manalu, Janviter; Safanpo, Apolo; Karapa, Enos; Hartiningsih, Endang; Liga, Marthen; Wambrauw, Oscar O.; Silo, Akbar
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 6 Nomor 2 Tahun 2024
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v6i2.6562

Abstract

Barapen, a cooking tradition in various indigenous Papuan communities. To date, various social science studies have been conducted to examine social values, business economics, and political economy. While research in the aspects of applied science has yet to be conducted to study the phenomenon of heat transfer by natural convection from hot stones to food in cooking packs, this research was conducted. The purpose of this research is to study the phenomenon of heat transfer by natural convection from hot stones to food in cooking packs. In this study, a square-shaped artificial pool (260 cm x 210 cm x 50 cm) with white batah stone walls was used to cook food in a barapen. On the four walls, a type K thermocouple is inserted to measure the temperature at 3 layers, which will be the object of research. The ingredients are vegetables, sweet potatoes, and chicken meat that has been cut and stoned. As a discussion, the temperature gradient between layers occurs due to the difference in the amount of volumetric heat against time in each layer. The difference in the amount of heat in each layer is due to the difference in the density of the hot vapor trapped in each layer. Thus, it can be said that the cooking of food in Barapen occurs due to natural heat convection.

Page 1 of 3 | Total Record : 21