cover
Contact Name
Parwadi Moengin
Contact Email
parwadi@trisakti.ac.id
Phone
+628128210951
Journal Mail Official
jurnalti@trisakti.ac.id
Editorial Address
Jurusan Teknik Industri FTI Universitas Trisakti Gedung Heri Hartanto Lantai 5 JL. Kyai Tapa no 1, Grogol, Jakarta Barat-11440
Location
Kota adm. jakarta barat,
Dki jakarta
INDONESIA
JURNAL TEKNIK INDUSTRI
Published by Universitas Trisakti
ISSN : 14116340     EISSN : 26225131     DOI : https://doi.org/10.25105/jti
Jurnal Teknik Industri (JTI) mainly focuses on industrial engineering scientific essays in the form of research results, surveys and literature review that are closely related to the Field of Industrial Engineering
Articles 385 Documents
Rancang Bangun Produk Furniture d engan Metode Ergonomic Function Deployment Onny Purnamayudhia; Subaderi Subaderi
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (801.028 KB) | DOI: 10.25105/jti.v10i3.8406

Abstract

Intisari—Rancang bangun produk furniture (kursi dan meja) saat ini banyak mengalami kemajuan dari sisi artistik dan penyempurnaan model. Penggunaan kursi dan meja tidak hanya untuk perabot Furniture di rumah saja namun dalam perkembangannya, Kursi dan Meja juga banyak digunakan diwilayah publik, baik itu digunakan untuk sarana diskusi atau tempat santai di kampus. Dalam Penelitian ini dirancang dengan metode Ergonomic Function Deployment (EFD). Metode Pengumpulan dan Analisis data yang digunakan melaui wawancara dan kuesioner. Pengumpulan data dengan Penyebaran kuisioner dengan 9 (Sembilan) pernyataan. Selain itu hipotesis penelitian dengan Analisis uji validitas dan uji reliabilitas. Untuk pengujian data menggunakan software SPSS. Sedangkan untuk dimensi tubuh dilakukan analisis data antropometri dan perhitungan percentil. Hasil pengujian data menghasilkan uji validitas yang menunjukkan valid dimana nilai r > 0,3. Selain itu, hasil uji reliabilitas menunjukkan Reliable dimana nilai cronbach’s alpha > 0,6.Abstract—The design of furniture products (chairs and tables) is currently experiencing a lot of progress in terms of artistic and model refinement. The use of chairs and tables is not only for furniture at home but in its development, chairs and tables are also widely used in public areas, whether it is used as a means of discussion or a relaxing place on campus. This research is designed with the Ergonomic Function Deployment (EFD) method. The data collection and analysis methods used were through interviews and questionnaires. Data collection by distributing questionnaires with 9 (nine) statements. In addition, the research hypothesis uses analysis of validity and reliability tests. For data testing using SPSS software. Meanwhile, for body dimensions, anthropometric data analysis and percentile calculations were performed. The results of data testing produce a validity test which shows valid where the value of r> 0.3. In addition, the reliability test results show Reliable where the cronbach's alpha value is> 0.6.
Strategi Peningkatan Keunggulan Kompetitif UKM Mina Indo Sejahtera Dengan Metode Interpretive Structural Modelling dan Analytic Network Process Pramudi Arsiwi; Prajanto Wahyu Adi
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (592.434 KB) | DOI: 10.25105/jti.v10i3.8407

Abstract

Intisari—Adanya peningkatan potensi pangsa pasar organik di Indonesia, menyebabkan persaingan yang cukup tinggi antar para pemilik usaha pangan organik. Oleh karenanya, diperlukan serangkaian strategi untuk menciptakan keunggulan kompetitif bagi UKM Mina Indo Sejahtera sebagai modal bersaing dengan para pesaing lainnya. Penelitian ini telah berhasil mengembangkan strategi peningkatan keunggulan kompetitif UKM Mina Indo dengan mengkombinasikan metode Interpretive Structural Modelling (ISM) dan Analytic Network Process (ANP) untuk mengkaji aspek kebutuhan bisnis dan strategi supply chain. Dari perhitungan ISM, didapatkan hubungan antar variabel (interrelationship) pada masing-masing aspek tersebut yang digambarkan dalam model jaringan ISM. Kemudian dari hasil perhitungan ANP Business Requirements, diketahui bahwa variabel dengan bobot prioritas terbesar adalah menjaga kualitas bahan baku dengan bobot sebesar 0,336, pemanfaatan pemasaran digital untuk pengembangan dan penjualan produk dengan bobot 0,239, serta pembuatan desain kemasan yang unik dan inovatif dengan bobot 0,133. Demi mendukung tercapainya Business Requirements tersebut, Strategi Supply Chain yang harus diprioritaskan berdasarkan perhitungan ANP adalah penerapan quality assurance pada setiap tahapan rantai pasok dengan bobot sebesar 0,222, koordinasi serta komunikasi efektif diantara mitra rantai pasokan dengan bobot 0,193, serta keterlibatan supplier dan reseller dalam menjaga kualitas bahan baku dan produk dengan bobot 0,163.Abstract— There is an increase in the potential for the organic market in Indonesia, which causes quite high competition among organic food business actors. Therefore, a series of strategies are needed to create a competitive advantage for Mina Indo Sejahtera SMEs as capital to compete with other competitors. This research has succeeded in developing a strategy to increase the competitive advantage of Mina Indo SMEs by combining Interpretive Structural Modeling (ISM) and Analytic Network Process (ANP) methods to examine aspects of business needs and supply chain strategy. From the ISM calculation, it is obtained the relationship between variables (interrelationship) in each of these aspects which is described in the ISM network model. Then from the results of the ANP Business Requirements calculation, it is known that the variable with the highest priority weight is maintaining the quality of raw materials with a weight of 0.336, the use of digital marketing for product development and sales with a weight of 0.239, and the creation of unique and innovative packaging designs with a weight of 0.133. For supporting the achievement of these Business Requirements, the Supply Chain Strategy that must be prioritized based on ANP calculations is the application of quality assurance at each stage of the supply chain with a weight of 0.222, effective coordination and communication between supply chain partners with a weight of 0.193, as well as the involvement of suppliers and resellers in maintaining quality of raw materials and products weighing 0.163.
Optimasi Permesinan CNC Router untuk Proses Cutting Material Kayu Mahoni Menggunakan Mata Pahat End Mill 3mm Tungsten Carbide Herwin Suprijono; Dewa Kusuma Wijaya
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (787.117 KB) | DOI: 10.25105/jti.v10i3.8408

Abstract

Intisari— Penelitian ini bertujuan untuk melakukan optimasi proses cutting dari mesin CNC Router tipe G-Weike WK1212. Optimasi yang dilakukan bertujuan untuk mencari nilai level setting optimal proses cutting material kayu mahoni menggunakan mata pahat end mill. Penelitian ini merupakan lanjutan dari penelitian yang telah dilakukan sebelumnya menggunakan mesin CNC serupa dengan material kayu mahoni, namun pada penelitian ini penambahan beberapa parameter respon perlu dilakukan oleh karena pertimbangan masa pakai mata pahat end mill yang digunakan untuk proses cutting material kayu tersebut. Mata pahat end mill yang digunakan pada penelitian ini memiliki karakteristik diameter pisau 3mm dengan 4 mata pisau spiral dan terbuat dari material tungsten carbide. Mata pahat tersebut memiliki harga yang relatif mahal di pasaran, sehingga parameter pengujian terkait mata pahat tersebut perlu dilakukan untuk meminimalisir cracking saat proses cutting. Parameter multi respon yang digunakan pada penelitian ini meliputi waktu proses aktual, dimensi panjang dan lebar hasil proses, kedalaman potong, temperatur dan tingkat cracking mata pahat end mill. Faktor yang digunakan pada penelitian ini adalah kecepatan spindel, kecepatan gerak pemakanan dan kedalaman potong per layer. Metode optimasi pada penelitian ini berbasis Design of Experiment (DoE) menggunakan metode Full Factorial Design dan optimasi plot multi respon. Hasil dari penelitian ini menunjukkan nilai level setting yang optimal untuk kecepatan spindel adalah 7 step, kecepatan gerak pemakanan adalah 6 step dan kedalaman potong per layer adalah 0,25mm. Nilai level setting optimal tersebut menghasilkan waktu proses minimal sebesar 14,31 menit, kedalaman potong sebesar 21,91mm, panjang sebesar 19,89mm, lebar sebesar 19,86mm, temperature mata pahat sebesar 57,7oC dan tingkat cracking sebesar 0.Abstract— This research aims to optimize cutting process of the G-Weike WK1212 CNC Router machine. The objective of this optimization is to find the optimal setting level for cutting process of mahogany wood using end mill router bit. This research is a continuation of previously research that has been done using a similar CNC machine to process mahogany wood material, but in this research the addition of several response parameters needs to be done because of the life time consideration from end mill router bit that used for the wood material cutting process. The end mill router bit that used in this research has a characteristic which is blade diameter is 3mm with 4 spiral blades and is made from tungsten carbide. That end mill router blade has a relatively expensive price on the market, so that the test parameters related to the tool blade need to be done to minimize cracking during cutting process. The multi response parameters used in this reserach include actual processing time, length and width dimensions from the process, depth of cut, temperature and cracking rate of the end mill router bit. The factors used in this research were spindle speed, motion speed feeding and depth of cut per layer. Optimization method in this research is based on Design of Experiment (DoE) using Full Factorial Design method and multi response plot optimization. The results of this study indicate that the optimal setting level value for spindle speed is 7 steps, the motion speed feeding is 6 steps and the depth per layer cut is 0.25mm. The optimal setting level value produces a minimum processing time is 14.31 minutes, depth of cut is 21.91mm, length is 19.89mm, width is 19.86mm, end mill router bit temperature is 57.7oC and cracking rate is 0.
Design of Conceptual Framework for Measuring Operational Performance of Third-Party Logistics Wahyu Andy Prastyabudi; Rizqa Amelia Zunaidi; Nabilla Adinna Cahyani; Hendrawan Widianto; Arda Erico Yuda; Elsa Diaz Yamila
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.78 KB) | DOI: 10.25105/jti.v10i3.8409

Abstract

Abstract— The logistics business is expected to soar significantly, for which will reach 30 percent by 2020, driven by the growth of transaction of e-commerce. This growth, indeed, requires an apparent concern from the transporter logistics to continuously enhance their performance. On the other hand, the performance of logistics transporters will provide a positive contribution to the increase of LPI (Logistics Performance Index) score of Indonesia. Thus, the development of performance measurement systems is necessary to maintain the competitiveness level of logistic actors. This study provides a comprehensive overview of performance measurement systems in regard to the 3PL (third party logistics) companies. The goal of this study is to develop such a conceptual framework that portrays the essential elements necessary to take into account when implementing performance monitoring system to the 3PL companies. The conceptual framework is established using grounded-theory approach which comprises of four main steps: collecting and mapping data sources, categorizing the data, identifying and naming concepts, and establishing a conceptual model. The framework itself, is constructed into two main stages: 1) developing KPIs, 2) measuring the performance. To exhibit the applicability of the proposed approach, a numerical experiment is provided. This research has two main contributions. First, the study fills the theoretical gap pertaining to the concept of performance assessment systems in case of 3PL companies. Second, in practical view the proposed conceptual framework contributes to the academia by describing the basis of establishing performance monitoring as well as to the practitioners who wish to better measure performance in the transporter logistics.
A case study on the application of activity-based costing on the inductor component Filzah Lina M Safeiee; Siti Khadijah M Saad; M Yazid Abu
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.987 KB) | DOI: 10.25105/jti.v10i3.8410

Abstract

Abstract— Traditional cost accounting (TCA) is no longer reflecting the current economic reality due to distorted information about the profitability of their orders, products and customers. A new costing method is required to overcome the shortcoming of TCA in the era of rapidly increasing product complexity and diversification. The aim of this work is to apply the method of activity-based costing (ABC) on the inductor component for better accuracy. The work begins by collecting data at electronic industry located at Pahang, Malaysia and the product selected is inductor component. ABC focuses on the costs inherent in the activity -based products to produce, distribute or support the products concerned. Through the method, the work successfully gathered the time spent by operator to complete the task given. The largest time spent is at workstation 1 with 92.12% while the smallest at workstation 2,7, 8 and 14 with 0.1727% respectively. The highest cost of capacity supplied is drum core winding with epoxy activity with MYR 5,869,250.40 and the amount of material used is assigned as the cost driver. As the demand quantity of the product is increase by 10%, the total cost of production is predicted to be MYR 6,365,159.18 while the product cost per unit is MYR 1.50.
Perancangan Meja dan Kursi Komputer Sesuai Dengan Sistem Smart Class pada Laboratorium Desain Produk dan Inovasi Institut Teknologi Del Chrisdio Ebenezer Marbun; Benedikta Anna Haulian Siboro
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (882.571 KB) | DOI: 10.25105/jti.v10i3.8411

Abstract

Intisari— Pembuatan rancangan fasilitas merupakan salah satu bagian yang harus dikerjakan dalam pembangunan laboratorium. Meja dan kursi komputer merupakan salah satu fasilitas yang akan dibuat di dalam laboratorium desain produk dan inovasi yang sedang dibangun di Institut Teknologi Del. Dalam hal ini perancangan meja dan kursi komputer dibuat menggunakan metode Quality Fucntion Deployment (QFD) yang digunakan untuk membangun rumah kualitas, sehingga dapat dilihat upaya pengembangan seperti apa yang dilakukan untuk menghasilkan meja dan kursi komputer yang sesuai. Dalam membangun rumah kualitas, dilakukan pengumpulan data dengan menggunakan sampel sebanyak 112 responden sesuai dengan perhitungan rumus slovin dan penggunaan dimensi kualitas produk sebagai acuan pengumpulan data. Dalam hal ini juga digunakan pendekatan antropometri untuk menemukan ukuran desain yang dibuat dengan software solidworks 2018. Dalam penggunaan pendekatan antropometri, data dikumpulkan dengan jumlah sampel yang sama dan dilakukan pengujian kesesuaian data menggunakan pengujian normalitas, keseragaman data, kecukupan data, hingga akhirnya menghasilkan data persentil untuk pembuatan desain.Abstract— Facility design is one part that must be done in the construction of a laboratory. Computer desks and chairs are among the facilities that will be built in the product design and innovation laboratory being built at the Del Institute of Technology. In this case, the design of computer desks and chairs is made using the Quality Function Deployment (QFD) method which is used to build the house of quality, so it can be seen what kind of development efforts are being made to produce appropriate computer desks and chairs. In building the house of quality, data collection was carried out using a sample of 112 respondents according to the calculation of the Slovin formula and the use of product quality dimensions as a reference for data collection. In this case, the anthropometric approach is also used to find the design size to be made with Solidworks 2018 software. In the use of the anthropometric approach, data is collected with the same number of samples and data suitability testing is carried out using normality testing, data uniformity, data adequacy, and finally producing the data of percentile for design creation
Perbaikan Kualitas Produk Nestable 100 di PT. Cahaya Metal Perkasa Danu Dananjaya; Dorina Hetharia; Sucipto Adisuwiryo
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (569.107 KB) | DOI: 10.25105/jti.v10i3.8427

Abstract

Intisari- Kualitas produk merupakan faktor yang penting dalam meningkatkan profit bagi perusahaan dan merupakan daya saing dengan perusahaan sejenis. Makalah ini mengkaji tentang perbaikan kualitas produk yang dihasilkan industri manufaktur. Kajian ini dilakukan di PT. Cahaya Metal Perkasa yang memproduksi Nestable 100. Persentase cacat produk Nestable 100 ini cukup besar sehingga perlu dilakukan perbaikan kualitas untuk mengurangi produk cacat tersebut. Tujuan penelitian ini adalah mengurangi cacat pada produk Nestable 100 menggunakan konsep Six Sigma melalui tahapan Define-Measure-Analyze-Improve-Control (DMAIC). Identifikasi Critical to Quality dan pendefinisian proses dengan menggunakan diagram Supplier-Input-Process-Output-Customer dilakukan pada tahap Define.. Uji stabilitas proses dengan menggunakan peta kendali dan menghitung tingkat sigma dilakukan pada tahap measure. Tingkat sigma yang diperoleh pada tahap measure sebesar 2,7 sigma. Dengan menggunakan diagram pareto pada tahap Analyze diperoleh tiga jenis cacat yang paling dominan yaitu Flange NG, Punch NG dan Corrugasi NG. Identifikasi penyebab kegagalan terjadinya jenis cacat pada tahap analyze menggunakan Failure Mode and Effect Analysis (FMEA) dan dilanjutkan dengan Fault Tree Analysis (FTA). Hasil Fault Tree Analysis yaitu terjadinya pencetakan corrugasi yang meleset dengan nilai probabilitas 0,517, gelombang dies tidak sama dengan nilai probabilitas 0,572 dan stopper bergeser dengan nilai probablitas 0,360. Usulan perbaikan yang diberikan adalah membuat Checksheet, membuat Record card, dan membuat Jig. Usulan perbaikan diimplementasikan pada tahap control, dan tingkat sigma pada tahap ini naik menjadi 3,04 sigma.Abstract- Product quality is an important factor in increasing profit for the company and is the competitiveness of similar companies. This paper examines the improvement of product quality produced by the manufacturing industry. This study was conducted at PT. Cahaya Metal Perkasa which produces Nestable 100. The defect percentage of Nestable 100 products is quite large, so it is necessary to improve the quality to reduce these defective products. The purpose of this study was to reduce defects in Nestable 100 products using the Six Sigma concept through the Define-Measure-Analyze-Improve-Control (DMAIC) stages. Identification of Critical to Quality and defining the process using the Supplier-Input-Process-Output-Customer diagram is carried out at the Define stage. Process stability testing using a control chart and calculating the sigma level is carried out at the measure stage. The sigma level obtained at the measure stage is 2.7 sigma. By using the Pareto diagram at the Analyze stage, the three most dominant types of defects are Flange NG, Punch NG and Corrugation NG. Identification of the cause of the failure of the defect type at analyze stage using Failure Mode and Effect Analysis (FMEA) and continued with Fault Tree Analysis (FTA). The results of the Fault Tree Analysis were the occurrence of incorrect corrugation printing with a probability value of 0.517, the dies wave was not the same as the probability value of 0.572 and the stopper shifted with a probability value of 0.360. The suggested improvements are to make a Check sheet, create a Record card, and make a Jig. Proposed improvements are implemented at the control stage, and the sigma level at this stage increases to 3.04 sigma.
K-Means Clustering Data COVID-19 R. A. Indraputra; Rina Fitriana
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (583.503 KB) | DOI: 10.25105/jti.v10i3.8428

Abstract

Intisari— Pandemi COVID-19 merupakan suatu kejadian yang menimbulkan banyak sekali data yang sulit diolah. Data-data yang sangat penting seperti jumlah infeksi yang terkonfirmasi, jumlah kematian, dan jumlah orang yang pulih dapat diperoleh dari database seperti Kaggle, akan tetapi data tersebut perlu diolah lagi agar dapat menjadi berguna. Tujuan dari penelitian ini adalah untuk memperoleh dan mengolah data COVID-19 yang terdapat pada Kaggle mengunakan metode Data Mining yaitu K-Means Clustering Untuk K-Means Clustering pada penelitian ini, akan digunakan tiga metode untuk mengolah data yaitu pengolahan menggunakan software Microsoft Excel, dan software Data Mining yaitu Weka dan KNIME. Dari hasil pengolahan data, diperoleh dua cluster data, dimana cluster 2 memiliki jumlah terjangkit dan meninggal yang lebih tinggi dibandingkan dengan cluster 1, maka daerah-daerah cluster tersebut perlu diprioritaskan penanganannya.Abstract— The COVID-19 pandemic is an event that has generated lots of data that are difficult to process. Crucial data such as number of confirmed infections, number of deaths, and number of people recovered can be obtained from databases such as Kaggle, however these data needs to be processed further to become useful. The purpose of this research is to obtain and process COVID-19 data contained in Kaggle using Data Mining method namely K-Means Clustering Therefore, to process Big Data such as this, a Data Mining technique can be used which is Clustering. For K-Means Clustering in this research, there will be three methods used to process this data which is processing using the Microsoft Excel software, and using the Weka and KNIME Data Mining software. From the data processing results, two data clusters are obtained, in which cluster 2 have higher number of confirmed cases and deaths compared to cluster 1, thus the regions in that cluster needs priority in handling.
PERANCANGAN MODEL SIMULASI LANTAI PRODUKSI PT. ELANGPERDANA TYRE INDUSTRY MENGGUNAKAN METODE THEORY OF CONSTRRAINT UNTUK MEMINIMASI WAKTU PRODUKSI M. Gifari Ramadhan; Parwadi Moengin
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1011.061 KB) | DOI: 10.25105/jti.v10i3.8492

Abstract

Intisari— PT. Elangperdana Tyre Industry (PT. EPTI) merupakan salah satu produsen yang bergerak di bidang pembuatan ban mobil. Permasalahan yang dihadapi perusahaan adalah waktu produksi aktual tidak sesuai dan lebih lama dibandingkan dengan target waktu produksi yang ada. Rata-rata waktu produksi aktual sebesar 32 hari sedangkan rata-rata target waktu produksi adalah 30 hari, hal ini disebabkan karena penumpukkan material pada beberapa stasiun kerja. Permasalahan pada lini produksi tersebut menjadi penyebab terhambatnya lini produksi yang mengakibatkan terjadinya bottleneck. Pada penelitian ini dilakukan perbaikan lini produksi yang disebabkan oleh penumpukkan material pada beberapa stasiun kerja tersebut. Objek penelitian yang diteliti pada Tugas Akhir ini adalah lantai produksi PT. Elangperdana Tyre Industry. Tujuan penelitian ini adalah untuk merancang model simulasi lantai produksi PT. Elangperdana Tyre Indusry menggunakan metode Theory of Constraint untuk meminimasi waktu produksi di PT. Elangperdana Tyre Industri. Tahapan awal dalam menganalisis lantai produksi adalah dengan melakukan pengamatan langsung ke lantai produksi dan pembuatan peta aliran proses untuk mengetahui kondisi awal dari lantai produksi. Tahapan berikutnya adalah melakukan perancangan model simulasi lantai produksi awal dan dilakukan verifikasi dan validasi pada model simulasi tersebut. Selanjutnya dilakukan permalan permintaan untuk digunakan sebagai jumlah target produksi pada simulasi usulan. Selanjutnya perbaikan lantai produksi menggunakan metode Theory of Constraint untuk mengetahui pengelompokkan stasiun kerja yang tergolong bottleneck dan tidak bottleneck. Terdapat tiga usulan perbaikan lantai produksi ini yaitu usulan 1 penambahan mesin building, usulan 2 penambahan mesin curing, dan Usulan 3 gabungan Usulan 1 dan Usulan 2. Penambahan mesin dikarenakan stasiun kerja tersebut mengalami bottleneck dan beban kerja berlebih. Setelah dilakukan simulasi maka Usulan 1 memiliki waktu produksi sebesar 653,93 jam, Usulan 2 memiliki waktu produksi sebesar 586,05 jam, dan Usulan 3 memiliki waktu produksi sebesar 549,34 jam dibandingkan dengan waktu simulasi awal yaitu 698,11 Jam.Usulan terpilih adalah usulan 3 karena meminimasi waktu produksi sebesar 148,77 jam.Abstract— PT. Elangperdana Tire Industry (PT. EPTI) is one of the manufacturers engaged in the manufacture of car tires. The problem faced by the company is the actual production time is not suitable and longer than the existing production time target. The average actual production time is 32 days while the average production time target is 30 days, this is due to the accumulation of material at several work stations. Problems in the production line are the cause of the production line obstruction which results in bottlenecks. In this study, improvements were made to the production line caused by the accumulation of material at some of these work stations. The object of research examined in this Final Project is the production floor of PT. Elangperdana Tire Industry. The purpose of this study was to design a production floor simulation model of PT. Elangperdana Tire Indusry uses the Theory of Constraint method to minimize production time at PT. Elangperdana Tire Industry. The initial stage in analyzing the production floor is by making direct observations to the production floor and making a process flow map to determine the initial conditions of the production floor. The next stage is to design the initial production floor simulation model and verify and validate the simulation model. Then the demand request is used to be used as the number of production targets in the proposed simulation. Furthermore, the improvement of the production floor uses the Theory of Constarint method to determine the classification of work stations classified as bottlenecks and not bottlenecks. There are three proposed improvements to this production floor, namely proposal 1 adding building machines, proposal 2 adding curing machines, and Proposal 3 a combination of Proposed 1 and Proposed 2. Addition of machines because the work station is experiencing bottlenecks and excessive workload. After simulations, Proposal 1 has a production time of 653.93 hours, Proposition 2 has a production time of 586.05 hours, and Proposition 3 has a production time of 549.34 hours compared to the initial simulation time of 698.11 Hours. Selected Proposal is proposal 3 because it minimizes production time by 148.77 hours.
Pengukuran Produktivitas pada Departemen Produksi 1 dengan Metode Objective Matrix dan Fishbone Diagram pada PT.ABC Arini Anestesia; Didien Suhardini
JURNAL TEKNIK INDUSTRI Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Indusri Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1119.913 KB) | DOI: 10.25105/jti.v10i3.9042

Abstract

Intisari -- PT. ABC merupakan salah satu produsen pembuatan sepatu yang terkenal di Indonesia. Selama periode Januari-Desember 2019, PT. ABC mengalami ketidaktercapaian target produksi. Hal ini membuat PT.ABC mengalami penurunan produktivitas. Penelitian ini bertujuan untuk mengevaluasi penurunan produktivitas dengan mengukur nilai produktivitas berdasarkan pada 3 kriteria yaitu; kriteria efektivitas, efisiensi, dan inferensial. Hasil dari pengukuran ini akan digunakan untuk perbaikan produktivitas di tahun-tahun mendatang. Metode yang digunakan adalah Objective Matrix (OMAX), dengan langkah langkah: penetapan kriteria, perhitungan rasio, perhitungan kinerja standar, penetapan sasaran akhir, penetapan bobot rasio, dan pembentukan matriks sasaran, penentuan nilai aktual, penentuan skor aktual, penentuan nilai produktivitas tiap rasio. Setelah melalui tahapan pengukuran produktivitas dengan Objective Matrix, maka didapatkan rasio yang memiliki kinerja buruk adalah rasio 2 yaitu rasio jam kerja, rasio 3 yaitu konsumsi energy listrik, dan rasi 5 yaitu rasio kerusakan mesin. Rasio 2 sebesar 0,107, rasio 3 yaitu sebesar 0,073, dan rasio 5 yaitu 4,11. Setelah dilakukan perbaikan dengan pengukuran produktivitas dengan objective matrix selanjutnya dilakukan analisa fishbone diagram terhadap rasio-rasio yang mengalami kinerja buruk tersebut berdasarkan faktor manusia, mesin, metode, dan material. Hasil Fishbone diagram ini didapatkan usulan perbaikan yaitu dari segi manusia adalah training karyawan tentang penggunaan energy listrik, training upskilling dan multiskill, pembuatan visual SOP di setiap mesin. Dari segi material yaitu adalah 1 Orang Quality Check di setiap Proses Cutting dan Proses Preparation- Sewing. Perbaikan untuk mesin adalah pembuatan stopper mesin ketika jam jam istirahat, pembuatan jadwal preventive mesin dan checklist. Perbaikan untuk metode adalah analisa stok sparepart berdasarkan mesin yang sering mengalami kerusakan, tooling proses penempelan di area preparation, Pembuatan Kartu Kanban Aliran Kerja di setiap Supermarket proses yaitu Cutting, Preparation dan Sewing.Abstract— PT. ABC is a well-known shoe-making manufacturer in Indonesia. During the period January-December 2019, PT. ABC has failed to reach its production target. This makes PT.ABC experience a decrease in productivity. This study aims to evaluate the decrease in productivity by measuring the value of productivity based on 3 criteria, namely; effectiveness, efficiency, and inferential criteria. The results of this measurement will be used to improve productivity in the coming years. The method used is the Objective Matrix (OMAX), with the following steps: criteria setting, ratio calculation, standard performance calculation, final goal setting, ratio weighting and target matrix formation, actual value determination, actual score determination, productivity value determination for each ratio . After going through the stages of measuring productivity with the Objective Matrix, the ratio that has poor performance is the ratio 2, namely the ratio of working hours, the ratio 3 which is the consumption of electrical energy, and constellation 5 which is the ratio of machine damage. Ratio 2 is 0.107, ratio 3 is 0.073, and ratio 5 is 4.11. After improving the productivity measurement with an objective matrix, a fishbone diagram analysis is carried out on the ratios with poor performance based on human, machine, method, and material factors. The results of this Fishbone diagram obtained suggestions for improvements, namely from a human perspective, employee training on the use of electrical energy, upskilling and multiskill training, making visual SOPs in each machine. In terms of material, there is 1 person Quality Check in each Cutting Process and Preparation-Sewing Process. Repairs for machines are making machine stops during break hours, making machine preventive schedules and checklists. Improvement for the method is the analysis of spare parts stock based on machines that often experience damage, tooling of the attachment process in the preparation area, making workflow Kanban cards in each process supermarket, namely Cutting, Preparation and Sewing.

Filter by Year

2011 2025


Filter By Issues
All Issue Vol. 15 No. 3 (2025): November 2025 Vol. 15 No. 2 (2025): July 2025 Vol. 15 No. 1 (2025): March 2025 Vol. 14 No. 3 (2024): November 2024 Vol. 14 No. 2 (2024): July 2024 Vol. 14 No. 1 (2024): March 2024 Vol. 13 No. 3 (2023): VOLUME 13 NO 3 NOVEMBER 2023 Vol. 13 No. 2 (2023): VOLUME 13 NO 2 JULI 2023 Vol. 13 No. 1 (2023): VOLUME 13 NO 1 MARET 2023 Vol. 12 No. 3 (2022): VOLUME 12 NO 3 NOVEMBER 2022 Vol. 12 No. 2 (2022): VOLUME 12 NO 2 JULI 2022 Vol. 12 No. 1 (2022): VOLUME 12 NO 1 MARET 2022 Vol. 11 No. 3 (2021): VOLUME 11 NO 3 NOVEMBER 2021 Vol. 11 No. 2 (2021): VOLUME 11 NO 2 JULI 2021 Vol. 11 No. 1 (2021): VOLUME 11 NO 1 MARET 2021 Vol. 10 No. 3 (2020): Volume 10 No 3 November 2020 Vol. 10 No. 2 (2020): Volume 10 No 2 Juli 2020 Vol. 10 No. 1 (2020): VOLUME 10 NO 1 MARET 2020 Vol. 9 No. 3 (2019): Volume 9 No 3 November 2019 Vol. 9 No. 2 (2019): VOLUME 9 NO 2 JULI 2019 Vol. 9 No. 1 (2019): Volume 9 No 1 Maret 2019 Vol. 8 No. 2 (2018): Volume 8 N0 2 Juli 2018 Vol. 8 No. 3 (2018): Volume 8 No 3 November 2018 Vol. 8 No. 1 (2018): Volume 8 No 1 Maret 2018 Vol. 7 No. 3 (2017): Volume 7 No 3 November 2017 Vol. 7 No. 2 (2017): Volume 7 Nomor 2 Juli 2017 Vol. 7 No. 1 (2017): Volume 7 Nomor 1 Maret 2017 Vol. 6 No. 3 (2016): Volume 6 No 3 November 2016 Vol. 6 No. 2 (2016): Volume 6 No 2 Juli 2016 Vol. 6 No. 1 (2016): Volume 6 No 1 Maret 2016 Vol. 5 No. 3 (2015): Volume 5 No 3 Novemberi 2015 Vol. 4 No. 3 (2014): Volume 4 No. 3 November 2014 Vol. 4 No. 2 (2014): Volume 4 No 2 Juli 2014 Vol. 4 No. 1 (2014): Volume 4 No 1 Maret 2014 Vol. 3 No. 3 (2013): Volume 3 No 3 November 2013 Vol. 3 No. 2 (2013): Volume 3 No 2 Juli 2013 Vol. 3 No. 1 (2013): Volume 3 No 1 Maret 2013 Vol. 2 No. 3 (2012): Volume 2 No 3 November 2012 Vol. 2 No. 2 (2012): Volume 2 No 2 Juli 2012 Vol. 2 No. 1 (2012): Volume 2 No 1 Maret 2012 Vol. 1 No. 2 (2011): Volume 1 No 2 Juli 2011 Vol. 1 No. 1 (2011): Volume 1 No 1 Maret 2011 More Issue