cover
Contact Name
Evangelista Lus Windyana Palupi
Contact Email
evangelistapalupi@unesa.ac.id
Phone
-
Journal Mail Official
mathedunesa@unesa.ac.id
Editorial Address
Gedung C8 lantai 1FMIPA UNESA Ketintang 60231 Surabaya Jawa Timur
Location
Kota surabaya,
Jawa timur
INDONESIA
MATHEdunesa
ISSN : 23019085     EISSN : 26857855     DOI : https://doi.org/10.26740/mathedunesa.v12n1
Core Subject : Education,
MATHEdunesa is a scientific journal of mathematics education published by the Mathematics Department of Faculty of Mathematics and Natural Sciences of Universitas Negeri Surabaya. MATHEdunesa accepts and publishes research articles and book review in the field of Education, which includes: ✅ Development of learning model ✅ Problem solving, creative thinking, and Mathematics Competencies ✅Realistic mathematics education and contextual learning, ✅Innovation of instructional design ✅Learning media development ✅ Assesment and evaluation in Mathematics education ✅ Desain research in Mathematics Education
Articles 325 Documents
Kreativitas Siswa SMA dalam Menyelesaikan Soal HOTS Materi Fungsi Komposisi Ditinjau dari Kemampuan Matematika Eka Radianti Istiqomah; Janet Trineke Manoy
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p997-1013

Abstract

ABSTRAK Manusia dalam melakukan kegiatan sehari–hari pasti tidak lepas dari aktivitas berpikir. Salah satu aktivitas berpikir adalah berpikir kreatif. Kreativitas merupakan suatu kapasitas dari seseorang ketika melakukan suatu aktivitas mental dalam pengelolaan informasi yang digunakan untuk pemecahan masalah dengan menghasilkan suatu solusi yang berbeda dan juga baru serta memenuhi indikator kefasihan, fleksibilitas, dan kebaruan. Mata pelajaran yang melatih siswa untuk berpikir kreatif salah satunya adalah mata pelajaran matematika. Jenis soal yang terdapat dalam mata pelajaran matematika salah satunya adalah soal HOTS. Dalam penelitian ini, kemampuan matematika dikelompokkan menjadi dua yaitu kemampuan matematika tinggi dan kemampuan matematika sedang. Tujuan penelitian ini yaitu untuk mendeskripsikan kreativitas siswa SMA dalam menyelesaikan soal HOTS materi fungsi komposisi ditinjau dari kemampuan matematika.Penelitian ini merupakan penelitian deskriptif kualitatif. Adapun subjek dalam penelitian ini diambil dari SMA Negeri 1 Pacitan kelas XI MIPA 7. Teknik pengumpulan data dilakukan dengan pemberian tes kemampuan matematika, tes soal HOTS, dan metode wawancara. Analisis data menggunakan indikator berpikir kreatif yaitu kefasihan, fleksibilitas, dan kebaruan.Hasil penelitian ini menunjukkan bahwa siswa dengan kemampuan matematika tinggi memiliki kreativitas yang berbeda-beda. Terdapat tiga siswa kurang kreatif, satu siswa kreatif, dan satu siswa sangat kreatif. Siswa dengan kemampuan matematika sedang memiliki kreativitas yang berbeda-beda pula. Terdapat satu siswa tidak kreatif, 2 siswa yang kurang kreatif, dan 2 siswa yang kreatif. Kata kunci: kreativitas, tingkat kemampuan berpikir kreatif, HOTS, kemampuan matematika.
Analisis kesalahan Siswa SMP dalam Memecahkan Masalah Kontekstual pada Materi Perbandingan Ditinjau Dari Gaya Kognitif Mufidatin Anjelina; Ismail Ismail
MATHEdunesa Vol 12 No 2 (2023): Jurnal Mathedunesa Volume 12 Nomor 2 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n2.p652-662

Abstract

The aim of this research is describe errors conducted by students of junior high schools with cognitive styles type field-dependent and field-independent in solving contextual problems in proportion and its causal factors. This research is a descriptive qualitative research. The research subjects for this research were 2 students with the most errors from each type of cognitive styles. The two subjects are of the same gender. Data was collected by interview techniques and test. This research used 3 kinds of instruments, those were interview guidelines, the GEFT test, and diagnostic tests. Data of this research is processed using Miles and Huberman technique which includes 3 steps. The results of this research shows the errors made by subject FD and FI cognitive style, and also the factors that cause the errors. Subject with FD cognitive style made errors such as, errors in understanding the problem, erros in devising a plan, erros in carrying out the plan, and looking back errors. The errors made by students with FI cognitive style included carrying out plans, and checking again. Factors that cause subject that has FD cognitive style made errors tend to be caused by difficulties in understanding problems, lack of the understanding of the mathematical concepts, and also lack of calculating skills. Factors that cause subject that has FI cognitive style made errors tend to result from a lack of thoroughness in students when solving problems.
Abstraksi Reflektif Siswa SMP dalam Menyelesaikan Masalah Matematika Ditinjau dari Kemampuan Matematika Bias Nadilia; Pradnyo Wijayanti
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p684-697

Abstract

Reflective abstraction is a process of reflection on previously learned concepts and applied to new situations. This study aims to describe the reflective abstraction of junior high school students in solving mathematical problems in terms of mathematical ability. The source of the data in this study were three male students of class VIII SMPN 20 Surabaya who had different mathematical abilities.The results of this study indicate that students with high mathematical abilities, at the recognition level, are able to remember and identify previous activities related to the problem at hand. At the representation level, students with high mathematical abilities are able to correctly translate information into mathematical models. At the level of structural abstraction, students with high mathematical abilities are able to solve problems correctly, try new ways, and overcome difficulties when solving problems. At the level of structural awareness, students with high mathematical abilities are able to provide arguments from the results of their answers and are able to solve further problems. Students with moderate mathematical abilities, at the introductory level are able to remember previous activities related to the problem at hand. At the representation level, students are able to correctly translate information into mathematical models. At the level of structural abstraction is able to solve the problem correctly. And at the level of structural awareness, students are able to solve new problems. Meanwhile, students with low mathematical abilities are unable to solve problems. Students with low mathematical abilities still have to be guided in the process of solving problems.
Numeracy of Eighth Grade Students in Solving AKM-Like Problems Based on Mathematical Ability Zenithe Wahyudistya; Rooselyna Ekawati; Dayat Hidayat
MATHEdunesa Vol 12 No 2 (2023): Jurnal Mathedunesa Volume 12 Nomor 2 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n2.p522-533

Abstract

Abstract: Numeracy is the ability to locate, use, interpret, evaluate, and communicate mathematical information and ideas in the real context. This research purpose to describe the numeracy of eighth grade students in solving AKM-like problems in equations and inequalities subdomain based on high, moderate, and low mathematical abilities. The research subjects were eighth grade students consisting of one student with high mathematical ability, one student with moderate mathematical ability, and one student with low mathematical ability. The research method used in this research is qualitative descriptive research. Data were obtained by numeracy test. Students with high mathematical abilities present the information obtained in the form of equations and inequalities, use mathematical rules and procedures on equations and inequalities, interpret the results in the context of the problem, evaluate the results of problem solving through supposed, and communicate the results of their interpretation to others both orally and writing appropriately. Students with moderate mathematical abilities present the information obtained in the form and use procedures and rules of equations and inequalities in solving problems appropriately. However, students with moderate mathematical abilities interprets the results inaccurately so that in communicating the results of the interpretation is also inaccurate and evaluate the results only by correcting or recalculating. Students with low mathematical abilities do not present information in the form of equations and inequalities, nor do they use procedures and rules of equations and inequalities in solving problems. The interpretation of students with low mathematical abilities is also incorrect so that communicating the results of interpretations is not correct. In addition, students with low mathematical abilities do not evaluate the results of problem solving, either through supposed or correcting and recalculating.
Profile of Student’s Mathematical Connection in Arithmetic Sequences and Series Based on Learning Styles Dyah Ayu Shofa Noer Azizah; Siti Khabibah; Dini Kinati Fardah
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p734-754

Abstract

Mathematical connection is the linkage between mathematical concepts internally and externally. Internally, namely the linkage between the mathematical concepts themselves. Externally, namely the linkage between mathematical concepts with other disciplines and everyday life. This study aims to describe the profile of students' mathematical connections with visual, auditory and kinesthetic learning styles in the material of arithmetic sequences and series. The research subjects were students of class XI MIPA consisting of one student with a visual learning style, one student with an auditory learning style and one student with a kinesthetic learning style. The criteria for research subjects in this study were that they were of the same gender and had high and equal scores on mathematical ability tests. The research instruments consisted of a Learning Style Questionnaire, Mathematical Ability Test, and Mathematical Connection Test. The research method used in this research is descriptive qualitative. The indicators in this study refer to three aspects of mathematical connections, namely connections between mathematical concepts, connections between mathematical concepts with everyday life, and connections between mathematical concepts with other disciplines. Based on the analysis used, the results of this study are as follows: student with a visual learning style fulfill all indicators on all three aspects of mathematical connection. Student with a auditory learning style fulfill all indicators on all three aspects of mathematical connection. Student with a kinesthetic learning style doesn’t fulfill one indicator on the connection aspect between mathematical concepts, namely using the connection of mathematical concepts in solving question of arithmetic sequences and series, fulfill the indicator on the connection aspect between mathematical concepts with everyday life, fulfill the indicator on the connection aspect between concepts mathematics with other disciplines, but didn’t arrive to a final solution.
Proses Berpikir Kreatif Siswa SMA dalam Menyelesaikan Masalah Kontekstual Materi Fungsi Kuadrat Muhammad Arif Fathoni; Tatag Yuli Eko Siswono
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p780-796

Abstract

Penelitian ini bertujuan untuk mendeskripsikan proses berpikir kreatif siswa SMA dengan kemampuan matematika tinggi dan sedang dalam menyelesaikan masalah kontekstual materi fungsi kuadrat. Jenis penelitian yaitu penelitian deskriptif kualitatif. Instrumen utamanya yaitu peneliti dan instrumen pendukung terdiri dari tes da wawancara terstruktur. Penelitian melibatkan 1 siswa kemampuan matematika tinggi dan 1 siswa kemampuan matematika sedang jenjang SMA kelas X. Teknik analisis mengunakan teknik analisis miles dan huberman. Berdasarkan hasil penelitian yaitu (1) siswa kemampuan matematika tinggi melakukan proses berpikir kreatifnya dimulai dari memahami informasi yang tersaji dengan menulis ke lembar jawaban dan langsung mendapatkan ide terkait yang dapat digunakan sebagai pemecahan masalah. Kemudian, siswa membuat strategi dari ide yang sudah didapatkan, dengan jumlah strategi lebih dari satu. Siswa juga melakukan perencanaan yang jelas tehadap strateginya dari awal hingga akhir, terakhir siswa dapat menyelesaikan masalah dengan benar dan akurat, dan juga melakukan pengecekan terhadap jawabannya tanpa perlu diarahkan, siswa juga berhasil membuktikan jawabannya menggunakan strategi lain.(2) siswa kemampuan matematika sedang melakukan.proses berpikir kreatif dimulai dari memahami informasi yang tersaji dengan membaca berulang kali, siswa juga perlu diberikan stimulus tambahan supaya mendapatkan ide terkait yang bisa digunakan sebagai pemecahan masalah. Kemudian, dalam proses membuat strategi dari ide yang sudah didapatkan, siswa hanya memunculkan satu strategi saja karena penguasaan materi yang kurang. Siswa juga membuat rencana, namun hanya bisa menjelaskan langkah awal saja. Terakhir, siswa dapat menyelesaikan masalah dengan benar dan akurat, namun sesekali perlu waktu berhenti untuk memikirkan langkah berikutnya. Dan siswa melakukan pengecekan terhadap jawabannya namun masih perlu diarahkan, siswa juga tidak membuktikan jawabannya menggunakan strategi lain, karena hanya satu strategi saja yang dimunculkan sebelumnya. Kata Kunci: Berpikir kreatif, Masalah Kontekstual, Fungsi Kuadrat
Pengembangan Game Edukasi Ksatria Aljabar Berbasis Android sebagai Suplemen Pembelajaran pada Materi Aljabar Muhammad Taufiqurrahman; Atik Wintarti; Nina Rinda Prihartiwi
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p898-920

Abstract

Pada abad ke-21, teknologi telah terhubung dengan segala bidang yang ada, salah satunya dalam pendidikan. Banyak aplikasi berbasis teknologi yang dapat menunjang pembelajaran, salah satunya pembelajaran matematika. Dalam matematika, sering kali peserta didik mengalami kesulitan dalam mempelajari operasi Aljabar dengan penyebabnya masih belum dapat mengidentifikasi suku-suku sejenis, variabel, koefisien, dan konstanta. Media pembelajaran dapat membantu peserta didik dalam belajar. Salah satu bentuknya adalah game edukasi. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan game edukasi berbasis Android yang bernama “Ksatria Aljabar” sebagai suplemen pembelajaran pada materi Aljabar yang valid, praktis, dan efektif. Penelitian pengembangan ini menggunakan model pengembangan ADDIE yang terdiri dari 5 tahap yaitu Analysis, Design, Development, Implementation, dan Evaluation. Game edukasi ini diujicobakan kepada 5 peserta didik kelas VII SMPN 3 Taman dan diimplementasikan kepada satu kelas peserta didik kelas VII SMPN 17 Surabaya. Hasil penelitian menunjukkan bahwa game edukasi ini memenuhi kriteria valid dengan memperoleh persentase 81,02% dari ahli media dan 77,68% dari ahli materi dengan kategori “Valid”. Kevalidan diperoleh dari angket validasi ahli media dan ahli materi. Selain itu, game edukasi ini memenuhi kriteria praktis dengan memperoleh persentase 88,75% dari angket respon pengguna dan 98,51% dari lembar observasi dengan kategori “Sangat Praktis”. Game edukasi ini juga termasuk efektif berdasarkan ketuntasan tes hasil belajar peserta didik sebesar 82,14% dengan kategori “Sangat Efektif”. Namun, game ini masih memiliki kekurangan yaitu tidak dapat menampilkan durasi video materi dan angket respon pengguna hanya berisi pernyataan favorable. Oleh karena itu, game edukasi ini perlu dikembangkan oleh peneliti selanjutnya dengan beberapa perbaikan.
Metakognisi Siswa dalam Memecahkan Masalah Numerasi Ditinjau dari Gaya Berpikir Alista Hariyanti; Tatag Yuli Eko Siswono
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p1014-1031

Abstract

Penelitian ini bertujuan untuk mendeskripsikan metakognisi siswa dalam memecahkan masalah numerasi di kelas XI yang ditinjau dari gaya berpikir Gregorc. Kemampuan metakognisi pada penelitian ini terdiri dari tiga tahap yaitu perencanaan (planning), pemantauan (monitoring), dan evaluasi (evaluation). Jenis penelitian ini adalah penelitian deskriptif kualitatif. Subjek penelitian ini adalah empat siswa yang diambil dari kelas XI IPA 6 di SMA Hang Tuah 2 Sidoarjo tahun ajaran 2021/2022 dimana empat siswa tersebut mewakili setiap gaya berpikir dengan mempertimbangkan skor angket. Teknik pengumpulan data yang digunakan pada penelitian ini yaitu teknik tes, wawancara, dokumentasi, dan observasi. Penelitian ini menggunakan teknik analisis data model Analysis Interactive dari Miles dan Huberman yang meliputi pengumpulan data, reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian ini menunjukkan bahwa subjek dengan pemikiran sekuensial lebih baik dalam memecahkan masalah daripada subjek dengan pemikiran acak. Subjek sekuensial konkret melakukan aktivitas metakognisi yang meliputi perencanaan, pemantauan, dan evaluasi meskipun terdapat indikator yang belum tercapai dengan maksimal. Subjek sekuensial abstrak terdapat indikator pada aktivitas pemantauan yang tidak tercapai. Subjek acak konkret belum memenuhi beberapa indikator pada aktivitas pemantauan dan evaluasi. Subjek acak abstrak terdapat beberapa indikator yang belum tercapai pada tiap aktivitas metakognisi.
Keterampilan Berpikir Kritis Siswa SMP dalam Memecahkan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika dan Perbedaan Jenis Kelamin Andinny Nur Rizky Prameswari; Ismail Ismail
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p946-981

Abstract

This research aims to describe the critical thinking skills of junior high school students in solving contextual math problems in terms of mathematical ability and gender differences. The type of research used is descriptive qualitative research. The subjects in this research were 1 male and 1 female student with high mathematics ability, 1 male and 1 female student with moderate mathematics ability, and 1 male and 1 female student with low mathematics ability.Data were collected using test and interview techniques. The instruments used were Mathematics Ability Test (TKM), Problem Solving Test (TPM), and interview guidelines. Based on the results of the research, it can be concluded that the critical thinking skills of (1) male and female students with high mathematical ability met the indicators of interpretation, analysis, evolution (on argument proof, because in argument assessment only male students met the sub-indicator), inference, and explanation. Male students did not fulfill the indicators of self-regulation, while female students did. (2) Male and female students with moderate mathematics ability met the indicators of interpretation, inference, and explanation. Male students did not fulfill the indicators of analysis and self-regulation, while female students did. However, both did not fulfill the evaluation indicator. (3) Male and female students with low mathematics ability have many differences in critical thinking skills. Male students did not fulfill the indicators of interpretation, analysis, explanation, and evaluation. However, the self-regulation indicator is fulfilled. While female students fulfill the indicators of interpretation and analysis. Female students did not fulfill the indicators of evaluation, explanation, and self-regulation.
Keterampilan Berpikir Kritis Siswa SMP dalam Menyelesaikan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika Indan Afifah Rahmawati; Pradnyo Wijayanti
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p720-733

Abstract

One of the important skills to be mastered by students is critical thinking skills. One way to bring up students' critical thinking skills is by confronting them with a problem. The context of the problem that is closest and can be recognized well by students is the context of daily life or is called contextual problem. This research is a qualitative descriptive study. The subjects of this study were three students of 8th grade at SMP Negeri 1 Kedunggalar with each student having high, medium and low mathematical abilities. The method of collecting data in this study is through tests of mathematical abilities, tasks of solving contextual mathematical problems, and interviews. The results showed that junior high school students had high, medium, and low math skills in clarification skills, namely students wrote down the information they knew about questions such as the size of tiles, the size of the library floor, and discounts. Students formulate the main problem, namely finding the cheapest price from a choice of two ceramics, with the concept used, namely the area of a square and a rectangle. In the assessment skills, students assess the information previously mentioned as sufficient to solve the problem and mention the relevance of the information to the completion step, namely the size of the tile area and the area of the library to determine the number of tiles needed. In inference skills, students with high and moderate mathematical abilities show a relationship of ideas related to the steps used, namely finding the number of ceramics, the total price, and the price after the discount. In strategy skills, students evaluate the steps used by reviewing the results of the completion that has been done. Meanwhile students with low mathematical abilities did not describe the relationship from the information known to the problem and could not evaluate the results of the solution.