cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 803 Documents
A Green and Sustainable Approach for Converting Laboratory Latex Glove Waste into Liquid Fuel via Microwave-assisted Pyrolysis Wangsa, Wangsa; Saviola, Aldino Javier; Hauli, Latifah; Trisunaryanti, Wega; Chandra, Patrik; Fitria, Riska Astin; Mahayuwati, Puspa Nindro; Wijaya, Karna
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20429

Abstract

The extensive use of chemical laboratories for experimental and research activities has resulted in the substantial accumulation of latex glove waste, a widely used form of personal protective equipment (PPE). This study presents a novel and sustainable approach for converting laboratory latex glove waste into liquid fuel using microwave-assisted pyrolysis (MAP), which aligns with the principles of green chemistry. Under optimal conditions, including a microwave power of 800 W and an irradiation time of 30 min, the process achieved a liquid product yield of 52.58 wt%, with 41.86 wt% consisting of gasoline-range hydrocarbons (C₅–C₁₂). The primary compound identified in the liquid product was D-limonene (C₁₀H₁₆), a valuable monocyclic terpene. Compared to conventional pyrolysis conducted in a semi-batch reactor, the MAP process exhibited superior performance in terms of liquid yield, gasoline-range hydrocarbon content, total hydrocarbon composition, and calorific value. This innovative waste-to-fuel conversion method demonstrates the strong potential of MAP as an efficient and environmentally responsible strategy for waste valorization and resource recovery. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Strategic Synthesis of Hierarchical Co3O4/ZSM-5 Zeolite as A Catalyst in Partial Oxidation of Methane: Bottom-up vs Top-down Methods Khatrin, Irena; Putri, Danika Nurranalya; Ridwan, Muhammad; Krisnandi, Yuni Krisyuningsih
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20441

Abstract

Methane, a potent greenhouse gas contributing approximately 19% to global warming and possessing a global warming potential 28 times greater than carbon dioxide, necessitates conversion into more beneficial chemicals. Partial oxidation of methane to methanol is a promising conversion method which is both time- and cost-efficient. This study synthesized ZSM-5 using two strategic syntheses: Bottom-Up and Top-Down, followed by cobalt oxide impregnation at varying percentages 2.5, 5, and 10% (w/w) to produce Co3O4/ZSM-5. To investigate its physicochemical properties, ZSM-5 catalysts were thoroughly characterized with XRD, FTIR, XRF, N2-physisorption, and SEM. These catalysts were then evaluated in methane partial oxidation reactions conducted in a batch reactor, with a CH4:N2 feed ratio of 0.75 bar:2 bar, at 150 °C for 60 minutes. Co3O4-supported Bottom-Up ZSM-5 with 5% Co-loading demonstrated the largest percentage yield of 62.08% compared to the other Co-loading amount and ZSM-5 synthesized via Top-Down method. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Kinetics Model and Optimization for Photocatalytic Degradation of Methylene Blue over Ag/TiO2 Catalyst Kadem, Amna Jwad; Lau, Xian Jin; Pung, Swee Yong; Sreekantan, Srimala; Ramakrishnan, Sivakumar
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20411

Abstract

Titanium dioxide (TiO2) particles are widely used as photocatalysts due to their stability, low toxicity, and relatively low cost. However, their application is limited by a wide bandgap and a high recombination rate. This project investigated the photocatalytic performance of Ag/TiO2 catalyst, prepared by coupling Ag metal to TiO2 using the liquid impregnation method. The photocatalytic activity of different concentrations of Ag metal solutions and different pH levels of Ag/TiO2 catalyst under UV and visible light irradiation was observed. It was shown that Ag/TiO2 catalyst had the best photodegradation efficiency (83.82%) and the highest rate constant (0.03298 min-1) in 50 ppm Ag metal concentration and at pH 5 under UV light irradiation. The operating conditions were optimised by using the Design of Experiment (DOE) and Response Surface Methodology (RSM) to obtain optimum photodegradation efficiency (PE). The optimum parameters were 22.6263 ppm Ag metal solution and pH of 5, which were estimated to produce the highest photodegradation efficiency (84.0006 %) and rate constant (0.0321 min-1). The concentration of the methylene blue (MB) followed a first-order exponential decay and showed a decreasing trend from its initial concentration. In addition, the photocatalytic degradation rate of MB has been modelled successfully by Power Law kinetic model derived from the Langmuir-Hinshelwood framework. Numerical and analytical methods were implemented to solve the Langmuir-Hinshelwood equation, and both methods were very effective in agreement with the trend shown by the experimental data. In terms of photodegradation efficiency, the kinetic model has slightly over predicted the experimental model due to some minor experimental error, but the experimental data effectively complied with the theoretical micro kinetics investigations simulated using Power Law kinetic model. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Enhancing Monomeric Sugar Production from Coconut Husk by FeCl3-assisted Hydrothermal Pretreatment and Enzymatic Hydrolysis Wijaya, Candra; Sangadji, Ningsi Lick; Muharja, Maktum; Widjaja, Tri; Riadi, Lieke; Widjaja, Arief
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20444

Abstract

Coconut husk (CCH), an abundant agricultural byproduct of the coconut processing industry, holds significant potential as a renewable feedstock for monomeric sugar production. However, efficient fractionation remains a challenge due to its recalcitrant lignocellulosic structure. This study investigates FeCl₃-assisted hydrothermal pretreatment (HTP) as a selective and scalable approach to enhance enzymatic hydrolysis efficiency and sugar recovery. The effects of FeCl₃ concentrations, temperatures, and unified of pretreatment conditions as combined hydrolysis factor (CHF) on biomass fractionation, modeling xylan dissolution, and monomeric sugar production were evaluated. Results indicate that 0.06 M FeCl₃ at 150 °C achieved the highest total monomeric sugar concentration of 7.364 g/L, an 11-fold increase compared to the non-catalyzed control (0.667 g/L) during HTP. This condition also facilitated 81.2% hemicellulose removal while minimizing cellulose and lignin degradation, thereby improving enzymatic digestibility. Furthermore, xylan hydrolysis also successfully developed with high correlation with unified CHF parameter. FeCl₃-assisted HTP CCH coupled with enzymatic hydrolysis further enhanced overall sugar recovery, with a total monomeric sugar yield of 18.4 g per 100 g raw CCH, representing a 4.4-fold increase compared to hydrothermally pretreated CCH without FeCl₃. These findings highlight FeCl₃-assisted HTP as a promising, cost-effective strategy for biomass fractionation, supporting its integration into lignocellulosic biorefineries for bio-based product development. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Preparation and Characterization of Zeolite A Synthesized from Narathiwat White Clay Sinchangreed, Abhirak; Watcharamaisakul, Sukasem; Janphuang, Pattanaphong
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20445

Abstract

Zeolite A is a widely used synthetic zeolite known for its high ion-exchange capacity and molecular sieving properties. This study explored the synthesis of zeolite A using Narathiwat white clay as a raw material. White clay, primarily composed of kaolinite (Al2Si2O5(OH)4), is considered a cost-effective source of aluminum and silicon for zeolite synthesis. The process involves the transformation of kaolinite into metakaolin via calcination, followed by hydrothermal crystallization under controlled conditions from natural white clay without conventional high-temperature calcination. Synthesized zeolite was characterized using X-ray diffraction (XRD), Differential Thermal Analysis (DTA), scanning electron microscopy (SEM), and X-ray fluorescence (XRF) spectroscopy to determine the elemental composition of the raw white clay and the synthesized zeolite A, while Fourier-transform infrared spectroscopy (FTIR) was used to confirm its structure and purity. Furthermore, the influence of the NaOH solution and the stability temperature of zeolite A are shown in this research. The optimum conditions for achieving zeolite A were calcined at 600 °C for 3 h in the first step, followed by using autoclaves at 200 °C for 24 h with a 3 M NaOH solution. The SEM results indicated that the Narathiwat white clay could be used to synthesize zeolite A, which exhibited a cubic morphology consisting primarily of silicon and aluminum. Notably, the crystallinity was influenced by the concentration of the NaOH solution employed. Moreover, the XRD and FTIR results demonstrate the feasibility of synthesizing high-quality zeolite A. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Reaction Kinetics of Waste Cooking Oil Hydrocracking into Biofuel Using Ni-Impregnated Mesoporous Silica Catalyst Salamah, Siti; Trisunaryanti, Wega; Kartini, Indriyana; Purwono, Suryo
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20399

Abstract

The growing demand for energy and the scarcity of fossil fuel resources have driven research into alternative fuels, one of which being the conversion of waste cooking oil into biofuel through hydrocracking. This study investigates the reaction kinetics of waste cooking oil hydrocracking using a Ni-impregnated mesoporous silica catalyst. The process was conducted at 450 °C with a hydrogen gas flow to produce products such as green naphtha, green gasoline, and green diesel. The proposed reaction kinetics model was the pseudo-first order, solved using differential and integral methods. The results showed that the first-order reaction provided a more representative outcome, with a reaction rate constant (k’) of 0.276 h⁻¹ at 450 °C. Additionally, the Arrhenius kinetic model revealed an activation energy of 37.8748 kJ/mol for this process. Thus, this study demonstrates a significant potential of using mesoporous silica catalysts in waste cooking oil hydrocracking to produce environmentally friendly and economically viable biofuels. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Enhanced Photocatalytic Performance of Ag-Modified ZnO for the Degradation of Tartrazine Dye Thi, Cam Vi Dao; Nguyen, Tuan Anh; Pham, Quang Minh; Vu, Anh-Tuan
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20443

Abstract

In this study, ZnO materials were synthesized using the hydrothermal method, and then modified with Ag using glucose, a biologically derived and environmentally friendly reducing agent, to produce Ag/ZnO materials with varying Ag contents. The obtained material samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy (PL) to determine the crystal structure, surface morphology, and optical properties, respectively. The results showed that the Ag/ZnO sample containing 5 % Ag (Ag/ZnO-5 %) was able to completely decompose Tartrazine (TA) dye after 80 min of irradiation with an 85 W UV lamp, with a first-order reaction rate constant k = 0.03789 min-1 and degradation capacity of 20 mg/g. In comparison, pure ZnO achieved an efficiency of less than 60 %. Factors affecting the photodegradation efficiency, such as initial TA concentration, catalyst dosage, and pH of the solution, were investigated to optimize the reaction conditions. In addition, the Ag/ZnO material exhibited high degradation efficiency toward various organic pollutants, such as Janus Green B (JGB), Congo red (C-Red), Methylene blue (MB), and Caffeine, indicating its potential for broad applications in wastewater treatment. Notably, the investigation of different irradiation light sources (UV, visible light, and sunlight) revealed that sunlight could promote complete degradation of TA in only 20 min of exposure. The photocatalytic reaction mechanism was also proposed to clarify the role of Ag as well as ZnO in enhancing the performance of the Ag/ZnO material system. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Green Synthesis of Cu-BDC Nanosheets for Methylene Blue Degradation Saridewi, Nanda; Zulys, Agustino; Bakri, Ridla
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20458

Abstract

Metal Organic Frameworks (MOFs) with two-dimensional (2D) nanosheet morphology possess unique surface characteristics, making them highly favourable for photocatalytic applications. This study synthesised Cu²⁺-based MOF nanosheets using a modified three-layer method. This approach is relatively simple, energy-efficient, and qualifies as a green synthesis method. The MOFs were prepared from copper(II) nitrate trihydrate (Cu(NO₃)₂·3H₂O) as the metal precursor and 1,4-benzenedicarboxylic acid (H₂BDC) as the organic linker, aiming to evaluate their photocatalytic activity for methylene blue degradation. The resulting Cu-BDC nanosheets displayed characteristic FTIR absorption bands at 1501 and 1547 cm⁻¹ corresponding to symmetric and asymmetric C=O stretching, 1394 cm⁻¹ for C–O stretching, and peaks at 751 and 569 cm⁻¹ associated with Cu–O vibrations. The XRD analysis revealed four sharp peaks at 2θ values of 8.2°, 10.2°, 16.1°, and 34.1°, indicating good crystallinity with a calculated crystallite size of 22.03 nm, and the bandgap energy is 3.89 eV. Cu-BDC nanosheets exhibit a thin sheet morphology with elemental compositions of carbon 73.08%, oxygen 11.19%, and copper 15.73%. Cu-BDC nanosheets exhibit optimal degradation activity at pH 13, with an optimal catalyst dose of 5 mg and an initial dye concentration of 20 ppm, achieving a degradation capacity of 98.62 mg/g after 120 minutes of reaction. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Effect of Aluminium Loading on SiO2/Al2O3-NiMo Catalysts Synthesized via KHP-template for Crude Palm Oil Hydrocracking Hasanudin, Hasanudin; Nakashima, Mhika; Asri, Wan Ryan; Novia, Novia; Hadiah, Fitri; Maryana, Roni; Al Muttaqii, Muhammad; Rinaldi, Nino
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20483

Abstract

The present study evaluates the catalytic activity of SiO2/Al2O3‒x and SiO2/Al2O3‒x‒NiMo (where x = 5, 10, 25 g of aluminium weight) synthesized using a potassium hydrogen phthalate (KHP) template-assisted route for the hydrocracking of crude palm oil (CPO) into biofuels. Increasing Al weight modified acidity, porosity, and NiMo dispersion, leading to distinct catalytic behavior. The optimal SiO2/Al2O3‒x‒NiMo catalyst (10 g Al) achieved ~94% conversion, dominated by jet fuel-range hydrocarbons (C10-C14) through synergistic hydrodeoxygenation and acid-catalyzed cracking-isomerization pathway. The enhanced performance originates from the balance between acidity and metal dispersion, highlighting that both template selection and Al loading govern the design of efficient SiO2/Al2O3‒NiMo catalysts for biofuel production. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Photocatalytic Degradation of Methyl Orange Using TiO2 - Coated Cordierite Substrates: A Comparison of Dip-Coating and Spray-Coating Methods Nguyen, Trung Hieu; Nguyen, Thu Huong; Vu, Anh-Tuan; Minh, Thang Le
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20400

Abstract

In this study, the calcination temperature of TiO2 nanoparticles was investigated at 300, 350, 400, and 450 °C. The results indicated that 400 °C was the optimal calcination temperature, yielding the highest amount of synthesized TiO2 nanoparticles remaining in the anatase phase (97.44 %). TiO2 nanoparticles were coated on cordierite using two methods: spray coating and dip coating. Their characteristics were analyzed and evaluated utilizing several modern techniques. Additionally, their photocatalytic and recovery capabilities were assessed based on methylene orange (MO) degradation efficiency. The spray coating method allowed the TiO2 nanoparticles to evenly cover the cordierite surface, resulting in the highest MO degradation efficiency and best recovery ability. The MO degradation efficiency remained at 83.07 % after 5 reuse cycles. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Filter by Year

2007 2026


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) (Issue in Progress) 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2025: Just Accepted Manuscript and Article In Press 2025 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue