cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 596 Documents
Investigation of the usage of zigzag transformers to reduce harmonics distortion in distribution systems Gumilar, Langlang; Wicaksono, Ibram Adib; Afandi, Arif Nur; Samat, Ahmad Asri Abd; Sias, Quota Alief
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.138-149

Abstract

The increasing use of power electronics in various sectors leads to harmonic distortion in electric power systems, affecting power quality and equipment longevity. While harmonic filters have been used to address this issue, they are limited in effectiveness, particularly in reducing distortion across the entire distribution system. This study aims to reduce harmonic distortion using a zigzag transformer as a more comprehensive solution in mitigating harmonic distortion throughout the entire distribution system. In this research, the zigzag transformer was placed at point common coupling to reduce harmonic distortion in the distribution system as a whole. A zigzag transformer connection was configured by connecting either three windings of a single-phase transformer or one winding of a three-phase transformer. Based on the results of this research, the total harmonic distortion (THD) value has decreased from 25.26 % to 2.48 % following the implementation of the zigzag transformer. This substantial decrease in THD concludes the zigzag transformer's effectiveness as a solution for improving power quality in electrical distribution systems.
Design of intelligent cruise control system using fuzzy-PID control on autonomous electric vehicles prototypes Saputro, Joko Slamet; Anwar, Miftahul; Adriyanto, Feri; Ramelan, Agus; Yusuf, Putra Maulana; Irsyadi, Fakih; Firmansyah, Rendra Dwi; Putri, Tri Wahyu Oktaviana
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.877

Abstract

Electric vehicles provide a solution for using alternative fuels, namely, electricity. Electric vehicles are used for short distances and intercity travel over long distances, increasing the risk of accidents. Cruise Control is a technology embedded in vehicles to maintain stable speeds; this system will automatically adjust the vehicle's speed when motion changes cause changes in vehicle speed. This study aims to apply lidar sensors to detect distance in the Intelligent Cruise Control (ICC) system using the Fuzzy-PID control method. Testing results were obtained at safe distance inputs of 5, 6, and 7 meters with various object distances. All the tests were carried out; the response systems were obtained with an average settling time of 5 seconds and an average overshoot of 1.53%. Therefore, the proposed Fuzzy-PID method works well for controlling Intelligent Cruise Control systems in autonomous electric vehicle prototypes.
Appendix MEV Vol 14 Iss 2 Pikra, Ghalya
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.%p

Abstract

Genetic algorithm-enhanced linear quadratic control for balancing bicopter system with non-zero set point Apriaskar, Esa; Prastiyanto, Dhidik; Utomo, Aryo Baskoro; Manaf, Akhyar Abdillah; Amelia, Ilya; Ilham, Dimas Alfarizky; Bilqis, Viyola Lokahita; Photong, Chonlatee
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.105-113

Abstract

Bicopter is an unmanned aerial vehicle (UAV) with the advantage of saving energy consumption. However, the unique two rotors design presents a challenge in designing a controller that achieves good stability, fast settling time, and the ability to overcome oscillations simultaneously. This article proposes a new control method for bicopter that uses a genetic algorithm optimization approach in the linear quadratic (LQ-GA) control method. The GA is used to search for the best weighting matrix parameters, Q and R, in the Linear Quadratic (LQ) control scheme. The proposed control method was tested on a balancing bicopter test platform with an input in the form of difference in pulse width modulation (PWM) signals for both rotors and an output in the form of roll angle. The control system was evaluated based on the stability of the transient response and the generated control signal. The results of the tests showed that the proposed LQ-GA control method has better stability, faster settling time, and smaller overshoot than the existing PI and standard LQ control methods. Therefore, the proposed LQ-GA control method is the most suitable for use in a balancing bicopter system with a non-zero setpoint.
Appendix MEV Vol 15 Iss 1 Pikra, Ghalya
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.1025

Abstract

Queen honey bee migration (QHBM) optimization for droop control on DC microgrid under load variation Aripriharta, Aripriharta; Al Rasyid, Mochammad Syarifudin; Bagaskoro, Muhammad Cahyo; Fadlika, Irham; Sujito, Sujito; Afandi, Arif Nur; Omar, Saodah; Rosmin, Norzanah
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.742

Abstract

Transmission line impedance in DC microgrids can cause voltage dips and uneven current distribution, negatively impacting droop control and voltage stability. To address this, this study proposes an optimization approach using heuristic techniques to determine the optimal droop parameters. The optimizcv ation considers reference voltage constraints and virtual impedance at various load conditions, particularly resistive. The optimization problem is addressed using two techniques: queen honey bee migration (QHBM) and particle swarm optimization (PSO). Simulation results show that QHBM reaches an error of 0.8737 at the fourth iteration. The QHBM and PSO algorithms successfully optimized the performance of the DC microgrid under diverse loads, with QHBM converging in 5 iterations with an error of about 0.8737, and PSO in 40 iterations drawn error is 0.9 while keeping the current deviation less than 1.5 A and voltage error less than 0.5 V. The deviation of current control and virtual impedance values are verified through comprehensive simulations in MATLAB/Simulink.
Enhancing efficiency of magnetic energy by implementing square-shaped materials adjacent to induction machine windings Habibi, Muhammad Afnan; Mustika, Soraya Norma; Aripriharta, Aripriharta; Che Ani, Adi Izhar
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.158-165

Abstract

This study provides a worthwhile method for increasing the magnetic field energy and induction machine (IM) effectiveness. The coupling between the transmitter and receiver windings in the IM system can be improved by creating materials with specific electromagnetic properties. This added material has altered the magnetic flow as well as the energy of the magnetic field. Eventually, it is possible to calculate the efficiency of the magnetic field, or the ratio of primary to secondary magnetic energy. With the use of two-dimensional finite element analysis, numerical results on five cases with various configurations of a magnetic substance have been produced. This material, which varies in length or breadth, is positioned close to the windings of the transmitter, receiver, or both. Case 3, in which the transmitter generates a magnetic field on the receiver side with a minimum energy of 0.05 J and a maximum energy of 0.015 J, is the ideal material configuration for DC current. Currently, the system efficiency is 0.29 on average. A 1 kHz transmitter's energy is constant under all conditions, but its counterpart's energy fluctuates significantly, with case 5 receiving the most energy. Therefore, case 5 turns into the optimal structural arrangement. It can be inferred that case 5 similarly dominates the other with an efficiency of 0.0026, which is much greater than that of 1 kHz efficiency, while the windings are operating at 1 MHz. This leads to stronger magnetic field coupling and increased power transfer effectiveness.
Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System Ismail, Kristian; Ismail, Syamsu
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 3, No 1 (2012)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2012.v3.17-22

Abstract

Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on) and the specific lag time (when off). This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.
ELM-based control system applications: A bibliometric analysis and review Pratiwi, Enggar Banifa; Prajitno, Prawito; Kurniawan, Edi
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.889

Abstract

This study conducts a bibliometric analysis of the extreme learning machine (ELM) research, with a particular emphasis on ELM-based control systems and applications. The objective of this study is to identify research trends, collaboration opportunities, and challenges in ELM applications. The analysis comprises the identification and retrieval of 3,174 articles from Scopus between 2018 and 2023. VOSviewer 1.6.20 is used for data interpretation, identifying six distinct keyword clusters and revealing both well-established research areas and emerging fields with significant potential for future exploration. Key research trends indicate a shift towards advanced or hybrid approaches, with recent interest in integrating optimization techniques. In the analysis, opportunities for collaboration with leading researchers are also highlighted. The findings emphasize the wide range of applications for ELM in improving the robustness of control systems while also highlighting important issues that need to be addressed. Finally, this study provides valuable insights into the current state and future directions of ELM research, especially ELM-based control systems.
Front Cover MEV Vol 14 Iss 2 Pikra, Ghalya
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.%p

Abstract