cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
register@ft.unipdu.ac.id
Editorial Address
Kompleks Pondok Pesantren Darul Ulum, Rejoso, Peterongan, Jombang, East Java, Indonesia, 61481
Location
Kab. jombang,
Jawa timur
INDONESIA
Register: Jurnal Ilmiah Teknologi Sistem Informasi
ISSN : 25030477     EISSN : 25023357     DOI : https://doi.org/10.26594/register
Core Subject : Science,
Register: Scientific Journals of Information System Technology is an international, peer-reviewed journal that publishes the latest research results in Information and Communication Technology (ICT). The journal covers a wide range of topics, including Enterprise Systems, Information Systems Management, Data Acquisition and Information Dissemination, Data Engineering and Business Intelligence, and IT Infrastructure and Security. The journal has been indexed on Scopus (reputated international indexed) and accredited with grade “SINTA 1” by the Director Decree (1438/E5/DT.05.00/2024) as a recognition of its excellent quality in management and publication for international indexed journal.
Arjuna Subject : -
Articles 219 Documents
Regresi linier berbasis clustering untuk deteksi dan estimasi halangan pada smart wheelchair Adikara, Putra Pandu; Wihandika, Randy Cahya; Utaminingrum, Fitri; Sari, Yuita Arum; Fauzi, M Ali; Syauqy, Dahnial; Maulana, Rizal
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1160.804 KB) | DOI: 10.26594/register.v3i1.587

Abstract

 Penelitian ini bertujuan untuk mengusulkan sebuah pendekatan dalam mendeteksi halangan dan memperkirakan jarak halangan untuk diterapkan pada kursi roda pintar (smart wheelchair) yang dilengkapi kamera dan line laser. Kamera menangkap sinar line laser yang jatuh di depan kursi roda untuk mengenali adanya halangan pada lintasan berdasarkan bentuk citra line laser tersebut. Estimasi jarak halangan dihitung dari hasil Regresi Linier. Metode Regresi Linier yang digunakan dalam penelitian ini adalah model bertingkat dengan k-Means clustering. Metode Regresi Linier model bertingkat digunakan untuk merepresentasikan korelasi antara jarak line laser pada citra dan jarak halangan secara aktual. Hasil metode Regresi Linier model bertingkat dengan k-Means clustering yang diujicobakan memberikan hasil yang lebih baik dengan RMSE sebesar 3.541 cm dibanding dengan Regresi Liner sederhana dengan RMSE sebesar 5.367 cm.   This research aim to propose a new approach to detect obstacles and to estimate the distance of the obstacle which is in this case applied to smart wheelchair equipped with camera and line laser. The camera capture the image of line laser reflected in front of the wheelchair to detect any existing obstacle on the wheelchair’s pathway based on the line shape of reflected line laser. Obstacle’s distance is estimated using Linier Regression. Linier Regression method used in this research is stepwise model using k-Means clustering. Linear Regression method with stepwise model will be used to represent the correlation between the distance of the line laser in the image and the actual distance of the obstacle in real world. The result of Linear Regression with stepwise model using k-Means clustering gave better result with RMSE of 3.541 cm than simple Linear Regression with RMSE of 5.367 cm.
Segmentasi pembuluh darah pada citra retina dengan menggunakan Multi-Scale Line Detector (MSLD) dan Adaptive Morphology Whardana, Adithya Kusuma; Sutaji, Deni
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1207.71 KB) | DOI: 10.26594/register.v3i1.716

Abstract

 Pembuluh darah pada retina merupakan bagian retina yang berfungsi memberikan suplai darah dan oksigen ke dalam retina. Sehingga apabila pembuluh darah tidak tersuplai oksigen, maka dapat ditarik kesimpulan bahwa pembuluh darah retina tersebut bermasalah, banyaknya noise pada daerah pembuluh darah menyebabkan proses dalam segmentasi. Karena permasalahan yang timbul, maka dalam penelitian ini diusulkan metode segmentasi pembuluh darah dengan menggabungkan dua metode, yaitu metode Multi-Scale Line Detector (MSLD) dan Adaptive Morphology. Dari keseluruhan metode memiliki fungsi yang berbeda-beda, MSLD berfungsi dalam proses pemisahan garis yang dibentuk oleh pembuluh darah yang dalam hal ini melalui proses perubahan citra orisinal ke citra green channel, namun dalam proses sebenarnya metode MSLD kurang dalam proses segmentasi, karena timbulnya masalah disaat terjadi garis yang menyilang antara optic disc dan pembuluh darah, sehingga pada saat segmentasi garis yang menyilang tersebut tidak akan ikut disegmentasi, sehingga membutuhkan metode penambahan pada proses segmentasinya, untuk itu diperlukan metode Adaptive Morphology, sehingga saat proses segmentasi sebelumnya yang telah dilakukan dengan menggunakan MSLD bisa disempurnakan dengan menggunakan metode Adaptive Morphology. Penggabungan metode sangat efektif karena bisa menghilangkan area optic disc yang membentuk garis menyilang dengan pembuluh darah secara sempurna dengan tanpa menghilangkan area pembuluh darah, sehingga dalam proses segmentasi dapat menghasilkan tingkat akurasi 97,94%.   The blood vessels of the retina are part of the retina that serves to supply blood and oxygen to the retina. So if the blood vessels are not supplied oxygen, it can be concluded that the retinal blood vessels are problematic, the amount of noise in the blood vessel causes the process in segments.Karena problems arise, then in this study proposed method of blood vessel segmentation by combining two methods, namely Methods of Multi-Scale Line Detector (MSLD) and adaptive morphology. From the whole method has different functions, MSLD function in the process of separation of lines formed by blood vessels in this case through the process of changing the original image to the green channel image, but in the actual process of MSLD method is less In the process of segmentation, due to the emergence of the problem when there is a crossing line between the optic disc and blood vessels, so that when the segmentation of the crossed line will not participate in segmentation, thus requiring additional method in the process of segmentation, for that required adaptive morphology method, Previous segmentation that has been done by using MSLD can be enhanced by using adaptive morphology method. Combination method is very effective because it can eliminate the optic disc area that forms a line crossed with blood vessels perfectly without removing the blood vessel area, so in the process of segmentation can produce an accuracy of 97.94%. 
Peringkasan dokumen berita Bahasa Indonesia menggunakan metode Cross Latent Semantic Analysis Mandar, Gamaria; Gunawan, Gunawan
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 2 (2017): July-December
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1717.578 KB) | DOI: 10.26594/register.v3i2.1161

Abstract

Peringkasan dokumen berita Bahasa Indonesia dapat membantu untuk menemukan ide-ide pokok atau informasi penting lain dari sebuah berita. Berita umumnya terdiri atas banyaknya paragraf menjadi sebab diperlukan sebuah sistem untuk mengekstrak informasi, sehingga mampu memberikan ide pokok atau informasi penting yang tepat kepada pembaca, tanpa harus membaca secara detail keseluruhan isi berita tersebut, di samping itu dapat dimanfaatkan guna keperluaan Really Simple Syndication Feed (RSS-Feed). Penelitian ini memaparkan peringkasan dokumen berita berbahasa Indonesia menggunakan metode Cross Latent Semantic Analysis (CLSA) dan Latent Semantic Analysis (LSA). Untuk menguji seberapa baik hasil ringkasan yang dilakukan CLSA penelitian ini menggunakan 240 artikel berita yang diambil dari halaman portal www.kompas.com dan dua pakar yang berlatar belakang bidang yang berbeda. Hasil ringkasan CLSA dengan compression rate 30% memperoleh nilai F-Measure 0.72%. Penelitian ini juga menemukan fakta bahwa CLSA lebih baik dari metode LSA yang merupakan cikal bakal dari metode CLSA, walaupun skor hasil F-Measure keduanya tidak berbeda jauh.  Summarizing news documents in Bahasa serves to find main ideas or any other important information from a piece of news. A system to extract the information from ones consisting of many paragraphs is then deemed necessary in order to present precise main ideas or important information to the readers without them having to read the entire passage of news documents, in addition to become useful for Really Simple Syndication Feed (RSS-Feed). This article discusses summarizing news documents in Bahasa using Cross Latent Semantic Analysis (CLSA). To test if the summary resulted from CLSA qualified, this study examines 240 news articles retrieved from www.kompas.com and employs two experts from different fields. The summary resulted from CLSA with a compression rate of 30% obtains an F-Measure of 0.72%. This study also evidently indicates that CLSA has better performance from Latent Semantic Analysis (LSA) which was the initial system for CLSA, despite both F-Measure percentages being only slightly different.
Otomatisasi klasifikasi kematangan buah mengkudu berdasarkan warna dan tekstur Kusuma, Selvia Ferdiana; Pawening, Ratri Enggar; Dijaya, Rohman
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1141.772 KB) | DOI: 10.26594/register.v3i1.576

Abstract

 Buah Mengkudu merupakan komoditi ekspor yang sedang berkembang di Indonesia. Proses pengklasifikasian kematangan buah Mengkudu perlu dilakukan agar kualitas buah Mengkudu yang di ekspor dapat terjamin. Proses klasifikasi dengan jumlah yang banyak akan sulit apabila dilakukan secara manual. Oleh karena itu, penelitian ini diperlukan untuk menghasilkan proses otomatisasi klasifikasi kematangan buah Mengkudu. Metode yang diusulkan untuk melakukan otomatisasi klasifikasi adalah proses pengenalan karakteristik buah Mengkudu berdasarkan fitur tekstur dan warna. Fitur tektur dan fitur warna didapatkan melalui proses pengolahan citra digital buah Mengkudu. Penelitian ini membuktikan bahwa pengklasifikasian buah Mengkudu dengan algoritma Support Vector Machines (SVM) menghasilkan nilai persentase lebih tinggi dari pada menggunakan algoritma k-Nearest Neighbors (KNN). Hasil persentase tertinggi yang didapatkan yaitu sebesar 87.22%.   Noni fruit is an export commodities that were flourishing in Indonesia. Noni fruit maturity classification process should be done in order the quality of the noni fruit which is exported can be guaranteed. Classification process in large quantities will be difficult if it is done manually. Therefore this research is needed to produce an automation classification process of noni fruit ripeness. The proposed method is characteristic introduction of noni fruit based on texture and color features. Texture and color features are obtained from digital image processing of noni fruit. This research proves that the classification of noni fruit with SVM algorithm produces better accuracy than using KNN algorithm. The highest accuracy is equal to 87.22%.
Pengenalan karakter angka menggunakan metode Integral Proyeksi Liantoni, Febri
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 2 (2017): July-December
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1197.719 KB) | DOI: 10.26594/register.v3i2.706

Abstract

 Saat ini dengan kemajuan teknologi membuat komputer memiliki kemampuan komputasi yang lebih tinggi untuk meningkatkan kemampuan dalam pengolahan data. Kemajuan teknologi ini juga berimbas pada kemampuan teknologi citra digital yang berhubungan dengan pengenalan karakter angka yang merupakan bagian dari pengenalan pola. Pengenalan karakter penting untuk pengolahan informasi yang memungkinkan proses identifikasi secara cepat dan otomatis. Pada penelitian ini dilakukan proses pengenalan karakter angka menggunakan metode Integral Proyeksi. Alasan menggunakan metode integral proyeksi karena mempunyai kelebihan pemrosesan yang sederhana dan cepat dalam mengidentifikasi suatu citra digital. Integral Proyeksi yang digunakan yaitu Integral Proyeksi vertikal dan Integral Proyeksi horisontal. Hasil penelitian menunjukkan pengenalan karakter angka mampu mengenali karakter dengan benar jika hasil praproses menghasilkan gambar yang baik. Pengenalan karakter angka akan kurang sempurna jika gambar yang diproses tidak baik, hal ini dikarenakan metode Integral Proyeksi bekerja dengan menghitung jumlah piksel tiap gambar untuk mengenai nilai gambar tersebut. Pengujian pengenalan karakater angka yang dilakukan terdapat 20 gambar uji menghasilkan nilai akurasi sebesar 65%.    Nowadays with the advancement of technology makes computers have higher computing capabilities to improve the capability of data processing. Advances in technology have also affected the ability of digital image technology related to the introduction of alphanumeric characters that are part of pattern recognition. Character recognition is important for information processing that allows rapid identification process automatically. In this research, numeric character recognition process using integral projection method. Reasons for using integral projection method for processing has the advantage of a simple and quick in identifying a digital image. The integral projection used is vertical projection and horizontal projection. The results showed numeric character recognition could recognize the characters correctly if the results of preprocessing produce good images. The introduction of the characters will be less than perfect if the images are processed is not good, this is because the integral projection method works by counting the number of pixels for each image to the value of the image. Testing the result of recognition from 20 image which is on dataset has been built to get accuracy value about 65%.
Implementasi metode Fuzzy Tsukamoto untuk menentukan hasil tes kesehatan pada penerimaan peserta didik baru di Sekolah Menengah Kejuruan Lestari, Muqodimah Nur; Islami, Pio Arfianova Fitrizky; Moses, Kirya Mateeke; Wibawa, Aji Prasetya
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 1 (2018): January-June
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1148.331 KB) | DOI: 10.26594/register.v4i1.718

Abstract

Implementasi metode Simple Multi Attribute Rating Technique untuk penentuan prioritas rehabilitasi dan rekonstruksi pascabencana alam Cholil, Saifur Rohman; Pinem, Agusta Praba Ristadi; Vydia, Vensy
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 1 (2018): January-June
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1173.717 KB) | DOI: 10.26594/register.v4i1.1133

Abstract

Penanganan bencana alam di Indonesia menjadi hal yang sangat penting untuk segera dilakukan dalam menentukan prioritas rehabilitasi dan rekonstruksi wilayah pascabencana alam. Penentuan prioritas rehabilitasi dan rekonstruksi pascabencana alam dilakukan dengan pendekatan metodologi Sistem Pendukung Keputusan (SPK) untuk membantu menyelesaikan permasalahan dalam proses pengambilan keputusan. Metode Simple Multi Attribute Rating Technique (SMART) akan diterapkan untuk menentukan prioritas wilayah pada rencana aksi rehabilitasi dan rekonstruksi pascabencana alam karena kesederhanaannya pada proses perhitungan dalam pemilihan alternatif yang telah dirumuskan. Tujuan penelitian ini adalah menghasilkan SPK dengan mengimplementasikan metode SMART untuk menentukan prioritas rehabilitasi dan rekonstruksi wilayah pascabencana, sehingga proses penanggulangan bencana akan tepat sasaran dan sesuai dengan peraturan penanggulangan bencana alam. Proses validasi pada penelitian ini adalah dengan membandingkan hasil metode dengan data fakta atau data kejadian (data histori). Koefisien Korelasi Rank Spearman yang diperoleh yaitu 0,95. Hal ini menunjukan bahwa, metode SMART bisa digunakan untuk menentukan prioritas rehabilitasi dan rekonstruksi pascabencana alam.The handling of natural disasters in Indonesia becomes a very important thing to be done in determining the priority of rehabilitation and reconstruction of post-disaster natural areas. The prioritization of post-disaster natural rehabilitation and reconstruction is done by methodology of Decision Support System (DSS) to help solve problems in decision making process. The Simple Multi Attribute Rating Technique (SMART) method will be applied to determine the priority of the region in the post-disaster natural rehabilitation and reconstruction action plan because of its simplicity in the calculation process in the alternative selection that has been formulated. The purpose of this research is to produce SPK by implementing SMART method to determine priority of rehabilitation and reconstruction of post disaster area, so that disaster management process will be appropriate target and in accordance with natural disaster management regulation. The validation process in this research is by comparing the method result with fact data or event data (historical data). Spearman Rank Correlation Coefficient obtained is 0.95. This indicates that the SMART method can be used to determine priorities for post-disaster rehabilitation and reconstruction.
Penanganan imbalance class data laboratorium kesehatan dengan Majority Weighted Minority Oversampling Technique Untoro, Meida Cahyo; Buliali, Joko Lianto
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 1 (2018): January-June
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2047.161 KB) | DOI: 10.26594/register.v4i1.1184

Abstract

Diagnosis suatu penyakit akan menjadi tepat jika didukung dengan berbagai proses mulai pengecekan awal (amannesa) sampai pengecekan laboratorium. Hasil dari proses laboratorium mempunyai informasi berbagai penyakit, akan tetapi beberapa jenis penyakit memiliki prevalensi rendah. Penyakit bervalensi rendah memiliki pengaruh dalam penanganan pasien lebih lanjut. Dengan rasio yang tidak seimbang data laboratorium akan menyebabkan nilai akurasi menjadi rendah dalam pengklasifikasian dan penanganan penyakit. Majority Weighted Minority Oversampling Technique (MWMOTE) adalah saalah satu cara untuk menyelesaikan imbalanced. Penelitian ini bertujuan menangani permasalahan ketidakseimbangan data laboratorium kesehatan sehingga diperoleh hasil pengklasifikasian penyakit dengan tingkat akurasi lebih tinggi. Hasil pada penelitian ini menunjukkan bahwa MWMOTE dapat meningkatkan akurasi untuk permasalahan ketidakseimbangan data sebesar 3,13%.   Diagnosis of a disease will be appropriate if supported by various processes ranging from initial checks (amannesa) to laboratory checks. Results from the laboratory process have information on various diseases, but some types of diseases have a low prevalence. Low-valvature disease has an effect in the treatment of the patient further. With an unbalanced ratio the laboratory data will cause the accuracy value to be low in the classification and handling of the disease. Majority Weighted Minority Oversampling Technique (MWMOTE) is one way to complete imbalanced. This study aims to address the problem of imbalance of health laboratory data to obtain the results of the classification of disease with a higher degree of accuracy. The results of this study indicate that MWMOTE can improve accuracy for data imbalance problems by 3.13%.
Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia Andriani, Yuli; Silitonga, Hotmalina; Wanto, Anjar
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 1 (2018): January-June
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1572.598 KB) | DOI: 10.26594/register.v4i1.1157

Abstract

Analisis pada penelitian penting dilakukan untuk tujuan mengetahui ketepatan dan keakuratan dari penelitian itu sendiri. Begitu juga dalam prediksi volume ekspor dan impor migas di Indonesia. Dilakukannya penelitian ini untuk mengetahui seberapa besar perkembangan ekspor dan impor Indonesia di bidang migas di masa yang akan datang. Penelitian ini menggunakan Jaringan Syaraf Tiruan (JST) atau Artificial Neural Network (ANN) dengan algoritma Backpropagation. Data penelitian ini bersumber dari dokumen kepabeanan Ditjen Bea dan Cukai yaitu Pemberitahuan Ekspor Barang (PEB) dan Pemberitahuan Impor Barang (PIB). Berdasarkan data ini, variabel yang digunakan ada 7, antara lain: Tahun, ekspor minyak mentah, impor minyak mentah, ekspor hasil minyak, impor hasil minyak, ekspor gas dan impor gas. Ada 5 model arsitektur yang digunakan pada penelitian ini, 12-5-1, 12-7-1, 12-8-1, 12-10-1 dan 12-14-1. Dari ke 5 model yang digunakan, yang terbaik adalah 12-5-1 dengan menghasilkan tingkat akurasi 83%, MSE 0,0281641257 dengan tingkat error yang digunakan 0,001-0,05. Sehingga model ini bagus untuk memprediksi volume ekspor dan impor migas di Indonesia, karena akurasianya antara 80% hingga 90%.   Analysis of the research is Imporant used to know precision and accuracy of the research itself. It is also in the prediction of Volume Exports and Impors of Oil and Gas in Indonesia. This research is conducted to find out how much the development of Indonesias exports and Impors in the field of oil and gas in the future. This research used Artificial Neural Network with Backpropagation algorithm. The data of this research have as a source from custom documents of the Directorate General of Customs and Excise (Declaration Form/PEB and Impor Export Declaration/PIB). Based on this data, there are 7 variables used, among others: Year, Crude oil exports, Crude oil Impors, Exports of oil products, Impored oil products, Gas exports and Gas Impors. There are 5 architectural models used in this study, 12-5-1, 12-7-1, 12-8-1, 12-10-1 and 12-14-1. Of the 5 models has used, the best models is 12-5-1 with an accuracy 83%, MSE 0.0281641257 with error rate 0.001-0.05. So this model is good to predict the Volume of Exports and Impors of Oil and Gas in Indonesia, because its accuracy between 80% to 90%.
Klasifikasi jenis kejadian menggunakan kombinasi NeuroNER dan Recurrent Convolutional Neural Network pada data Twitter Putra, Fatra Nonggala; Fatichah, Chastine
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 2 (2018): July-December
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1197.215 KB) | DOI: 10.26594/register.v4i2.1242

Abstract

Sistem deteksi kejadian dari data Twitter bertujuan untuk mendapatkan data secara real-time sebagai alternatif sistem deteksi kejadian yang murah. Penelitian tentang sistem deteksi kejadian telah dilakukan sebelumnya. Salah satu modul utama dari sistem deteksi kejadian adalah modul klasifikasi jenis kejadian. Informasi dapat diklasifikasikan sebagai kejadian penting jika memiliki entitas yang merepresentasikan di mana lokasi kejadian terjadi. Beberapa penelitian sebelumnya masih memanfaatkan fitur ‘buatan tangan’, maupun fitur model berbasis pipeline seperti n-gram sebagai penentuan fitur kunci klasifikasi yang tidak efektif dengan performa kurang optimal. Oleh karena itu, diusulkan penggabungan metode Neuro Named Entity Recognition (NeuroNER) dan klasifier Recurrent Convolutional Neural Network (RCNN) yang diharapkan dapat melakukan deteksi kejadian secara efektif dan optimal. Pertama, sistem melakukan pengenalan entitas bernama pada data tweet untuk mengenali entitas lokasi yang terdapat dalam teks tweet, karena informasi kejadian haruslah memiliki minimal satu entitas lokasi. Kedua, jika tweet terdeteksi memiliki entitas lokasi maka akan dilakukan proses klasifikasi kejadian menggunakan klasifier RCNN. Berdasarkan hasil uji coba, disimpulkan bahwa sistem deteksi kejadian menggunakan penggabungan NeuroNER dan RCNN bekerja dengan sangat baik dengan nilai rata-rata precision, recall, dan f-measure masing-masing 94,87%, 92,73%, dan 93,73%.    The incident detection system from Twitter data aims to obtain real-time information as an alternative low-cost incident detection system. One of the main modules in the incident detection system is the classification module. Information is classified as important incident if it has an entity that represents where the incident occurred. Some previous studies still use handmade features as well as feature-based pipeline models such as n-grams as the key features for classification which are deemed as ineffective. Therefore, this research propose a combination of Neuro Named Entity Recognition (NeuroNER) and Recurrent Convolutional Neural Network (RCNN) as an effective classification method for incident detection. First, the system perform named entity recognition to identify the location contained in the tweet text because the event information should have at least one location entity. Then, if the location is successfully identified, the incident will be classified using RCNN. Experimental result shows that the incident detection system using combination  of NeuroNER and RCNN works very well with the average value of precision, recall, and f-measure 92.44%, 94.76%, and 93.53% respectively.

Page 4 of 22 | Total Record : 219