Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Quantitative Research and Modeling

Stock Investment Portfolio Optimization Using Mean-Variance Model Based on Stock Price Prediction with Long-Short Term Memory Febrianty, Popy; Napitupulu, Herlina; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol 6, No 2 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i2.1002

Abstract

Stock investment in the technology sector in Indonesia offers high potential returns. However, like any other investment instruments, the associated risks cannot be overlooked. Therefore, an appropriate portfolio optimization strategy is needed to enable investors to achieve optimal returns while managing risk. In this study, the author combines stock price prediction approaches with portfolio optimization methods to construct an efficient portfolio. The Long-Short Term Memory (LSTM) model is used to predict daily closing stock prices, with model performance evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) metrics. An optimal LSTM model is obtained with a batch size hyperparameter of 16 for ISAT, MTDL, MLPT, and EDGE stocks, and a batch size of 32 for DCII stock. For all stocks, the average prediction error from the actual values falls within the range of 1.53% ≤ MAPE ≤ 3.52%. The optimal portfolio is constructed using the Mean-Variance risk aversion model to maximize expected returns while considering risk. The resulting optimal portfolio composition consists of a weight allocation of 19.7% for ISAT stock, 36.8% for MTDL stock, 34.8% for MLPT stock, 3.6% for EDGE stock, and 15% for DCII stock. This portfolio yields an expected portfolio return of 0.001249 and a portfolio variance of 0.000311.
Application of Mathematical Model in Bioeconomic Analysis of Skipjack Fish in Pelabuhanratu, Sukabumi Regency, Jawa Barat Nurkasyifah, Fathimah Syifa; Supriatna, Asep K.; Napitupulu, Herlina
International Journal of Quantitative Research and Modeling Vol. 5 No. 1 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i1.598

Abstract

Presently, sustainability has emerged as a crucial and compelling concern across diverse sectors, evolving into a long-term agenda championed by the United Nations through the implementation of the Sustainable Development Goals (SDGs). Within the SDGs, particularly under point 14 addressing life below water, emphasis is placed on ensuring sustainability in aquatic ecosystems, encompassing the fisheries sector. The concept of Maximum Sustainable Yield (MSY) holds significance in the bioeconomic analysis of fisheries, influencing decision-making processes aimed at preserving sustainability. Regrettably, several studies have identified inaccuracies in the determination of MSY, leading to instances of overfishing in various regions. Conversely, it is imperative to give due attention to Maximum Economic Yield (MEY) to ensure that economic considerations remain integral to decision-making processes. Consequently, a more comprehensive and detailed bioeconomic analysis, incorporating mathematical models, becomes essential. Among these models, the logistic growth rate model and the Gompertz growth rate model stand out as significant contributors. 
The Comparison of Investment Portfolio Optimization Result of Mean-Variance Model Using Lagrange Multiplier and Genetic Algorithm Syahla, Raynita; Susanti, Dwi; Napitupulu, Herlina
International Journal of Quantitative Research and Modeling Vol. 5 No. 1 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i1.611

Abstract

Investment portfolio optimization is carried out to find the optimal combination of each stock with the aim of maximizing returns while minimizing risk by diversification. However, the problem is how much proportion of funds should be invested in order to obtain the minimum risk. One approach that has proven effective in building an optimal investment portfolio is the Mean-Variance model. The purpose of this study is to compare the results of the Mean-Variance model investment portfolio optimization using Lagrange Multiplier method and Genetic Algorithm. The data used are stocks that are members of the LQ45 index for the period February 2020-July 2021. Based on the research results, there are five stocks that form the optimal portfolio, namely ADRO, AKRA, BBCA, CPIN, and EXCL stocks. The optimal portfolio generated by the Lagrange Multiplier method has a risk of 0.000606 and a return of 0.000726. Meanwhile, using the Genetic Algorithm resulted in a risk of 0.000455 and a return of 0.000471. Thus, the Genetic Algorithm method is more suitable for investors who prioritize lower risk. Meanwhile, the Lagrange Multiplier method produces a relatively higher risk, making it less suitable for investors who expect a small risk. 
Stock Investment Portfolio Optimization Using Mean-Variance Model Based on Stock Price Prediction with Long-Short Term Memory Febrianty, Popy; Napitupulu, Herlina; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 6 No. 2 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i2.1002

Abstract

Stock investment in the technology sector in Indonesia offers high potential returns. However, like any other investment instruments, the associated risks cannot be overlooked. Therefore, an appropriate portfolio optimization strategy is needed to enable investors to achieve optimal returns while managing risk. In this study, the author combines stock price prediction approaches with portfolio optimization methods to construct an efficient portfolio. The Long-Short Term Memory (LSTM) model is used to predict daily closing stock prices, with model performance evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) metrics. An optimal LSTM model is obtained with a batch size hyperparameter of 16 for ISAT, MTDL, MLPT, and EDGE stocks, and a batch size of 32 for DCII stock. For all stocks, the average prediction error from the actual values falls within the range of 1.53% ≤ MAPE ≤ 3.52%. The optimal portfolio is constructed using the Mean-Variance risk aversion model to maximize expected returns while considering risk. The resulting optimal portfolio composition consists of a weight allocation of 19.7% for ISAT stock, 36.8% for MTDL stock, 34.8% for MLPT stock, 3.6% for EDGE stock, and 15% for DCII stock. This portfolio yields an expected portfolio return of 0.001249 and a portfolio variance of 0.000311.