Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Electronics, Electromedical Engineering, and Medical Informatics

BHMI: A Multi-Sensor Biomechanical Human Model Interface for Quantifying Ergonomic Stress in Armored Vehicle Mutiara, Giva Andriana; Adiluhung, Hardy; Periyadi, Periyadi; Alfarisi, Muhammad Rizqy; Meisaroh, Lisda
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 3 (2025): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i3.877

Abstract

Ergonomic stress inside armored military vehicles presents a critical yet often overlooked risk to soldier safety, operational effectiveness, and long-term health. Traditional ergonomic assessments rely heavily on subjective expert evaluations, failing to capture dynamic environmental stressors such as vibration, noise, thermal fluctuations, and gas exposure during actual field operations. This study aims to address this gap by introducing the Biomechanical Human Model Interface (BHMI), a multi-sensor platform designed to objectively quantify ergonomic stress under operational conditions. The main contribution of this work is the development and validation of BHMI, which integrates anthropometric human modeling with embedded environmental sensors, enabling real-time, multi-dimensional ergonomic data acquisition during vehicle maneuvers. BHMI was deployed in high-speed off-road vehicle operations, simulating the 50th percentile Indonesian soldier’s seated posture. The system continuously monitored vibration (0–16 g range), noise (30–130 dB range), temperature (–40°C to 80°C), humidity (0–100% RH), and gas concentration (CO and NH₃) using calibrated, field-hardened sensors. Experimental results revealed ergonomic stress levels exceeding human tolerance thresholds, including vibration peaks reaching 9.8 m/s², cabin noise levels up to 100 dB, and cabin temperatures exceeding 39°C. The use of BHMI improved the repeatability and precision of ergonomic risk assessments by 27% compared to traditional methods. Seating gap deviations of up to ±270 mm were identified when soldiers wore full operational gear, highlighting critical areas of postural fatigue risk. In conclusion, BHMI represents a novel, sensor-integrated approach to ergonomic evaluation in military environments, enabling more accurate design validation, reducing subjective bias, and providing actionable insights to enhance soldier endurance, comfort, and mission readiness.