Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Indonesian Journal of Business Intelligence (IJUBI)

KOMPARASI METODE NAÏVE BAYES DAN C4.5 DALAM KLASIFIKASI LOYALITAS PELANGGAN TERHADAP LAYANAN PERUSAHAAN Pradana, Musthofa Galih; Saputro, Pujo Hari
Indonesian Journal of Business Intelligence (IJUBI) Vol 3, No 1 (2020): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Program Studi S1 Sistem Informasi Fakultas Komputer Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v3i1.1205

Abstract

Keberadaan pelanggan bagi jalannya sebuah usaha sangatlah penting. Pelanggan memiliki  kecenderungan yakni  untuk tetap lanjut berlangganan dengan perusahaan atau sebaliknya berhenti berlangganan. Salah satu teknik yang dapat digunakan untuk mengidentifikasi kecenderungan loyalitas pelanggan  adalah dengan klasifikasi data. Berdasarkan data pelanggan yang dimiliki perusahaan dapat dilakukan pengolahan data atau data mining dengan mengkelompokan pelanggan yang loyal dan yang tidak loyal. Ada banyak metode yang dapat diterapkan untuk klasifikasi data, diantaranya adalah algortima Naïve Bayes dan C4.5. Kedua metode ini menghasilkan akurasi yang berbeda ketika digunakan untuk proses klasifikasi data. Digunakan 2 skenario dalam proses pengujian kedua algoritma,  skenario membagi data dalam data testing dan training serta skenario pengujian menggunakan cross validation. Hasil kedua skenario ini menunjukan bahwa metode C4.5 lebih unggul dibandingkan dengan metode Naïve Bayes dengan akurasi skenario 1 sebesar 78,6086 % dan skenario 2 akurasi sebesar 78,61%. AbstrakKeberadaan pelanggan bagi jalannya sebuah usaha sangatlah penting. Pelanggan memiliki  kecenderungan yakni  untuk tetap lanjut berlangganan dengan perusahaan atau sebaliknya berhenti berlangganan. Salah satu teknik yang dapat digunakan untuk mengidentifikasi kecenderungan loyalitas pelanggan  adalah dengan klasifikasi data. Berdasarkan data pelanggan yang dimiliki perusahaan dapat dilakukan pengolahan data atau data mining dengan mengkelompokan pelanggan yang loyal dan yang tidak loyal. Ada banyak metode yang dapat diterapkan untuk klasifikasi data, diantaranya adalah algortima Naïve Bayes dan C4.5. Kedua metode ini menghasilkan akurasi yang berbeda ketika digunakan untuk proses klasifikasi data. Digunakan 2 skenario dalam proses pengujian kedua algoritma,  skenario membagi data dalam data testing dan training serta skenario pengujian menggunakan cross validation. Hasil kedua skenario ini menunjukan bahwa metode C4.5 lebih unggul dibandingkan dengan metode Naïve Bayes dengan akurasi skenario 1 sebesar 78,6086 % dan skenario 2 akurasi sebesar 78,61%.
KOMPARASI METODE NAÏVE BAYES DAN C4.5 DALAM KLASIFIKASI LOYALITAS PELANGGAN TERHADAP LAYANAN PERUSAHAAN Musthofa Galih Pradana; Pujo Hari Saputro
Indonesian Journal of Business Intelligence (IJUBI) Vol 3, No 1 (2020): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Program Studi S1 Sistem Informasi Fakultas Komputer dan Teknik Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v3i1.1205

Abstract

Keberadaan pelanggan bagi jalannya sebuah usaha sangatlah penting. Pelanggan memiliki  kecenderungan yakni  untuk tetap lanjut berlangganan dengan perusahaan atau sebaliknya berhenti berlangganan. Salah satu teknik yang dapat digunakan untuk mengidentifikasi kecenderungan loyalitas pelanggan  adalah dengan klasifikasi data. Berdasarkan data pelanggan yang dimiliki perusahaan dapat dilakukan pengolahan data atau data mining dengan mengkelompokan pelanggan yang loyal dan yang tidak loyal. Ada banyak metode yang dapat diterapkan untuk klasifikasi data, diantaranya adalah algortima Naïve Bayes dan C4.5. Kedua metode ini menghasilkan akurasi yang berbeda ketika digunakan untuk proses klasifikasi data. Digunakan 2 skenario dalam proses pengujian kedua algoritma,  skenario membagi data dalam data testing dan training serta skenario pengujian menggunakan cross validation. Hasil kedua skenario ini menunjukan bahwa metode C4.5 lebih unggul dibandingkan dengan metode Naïve Bayes dengan akurasi skenario 1 sebesar 78,6086 % dan skenario 2 akurasi sebesar 78,61%. AbstrakKeberadaan pelanggan bagi jalannya sebuah usaha sangatlah penting. Pelanggan memiliki  kecenderungan yakni  untuk tetap lanjut berlangganan dengan perusahaan atau sebaliknya berhenti berlangganan. Salah satu teknik yang dapat digunakan untuk mengidentifikasi kecenderungan loyalitas pelanggan  adalah dengan klasifikasi data. Berdasarkan data pelanggan yang dimiliki perusahaan dapat dilakukan pengolahan data atau data mining dengan mengkelompokan pelanggan yang loyal dan yang tidak loyal. Ada banyak metode yang dapat diterapkan untuk klasifikasi data, diantaranya adalah algortima Naïve Bayes dan C4.5. Kedua metode ini menghasilkan akurasi yang berbeda ketika digunakan untuk proses klasifikasi data. Digunakan 2 skenario dalam proses pengujian kedua algoritma,  skenario membagi data dalam data testing dan training serta skenario pengujian menggunakan cross validation. Hasil kedua skenario ini menunjukan bahwa metode C4.5 lebih unggul dibandingkan dengan metode Naïve Bayes dengan akurasi skenario 1 sebesar 78,6086 % dan skenario 2 akurasi sebesar 78,61%.
KOMPARASI METODE SUPPORT VECTOR MACHINE DAN NAÏVE BAYES DALAM KLASIFIKASI PELUANG PENYAKIT SERANGAN JANTUNG Musthofa Galih Pradana; Pujo Hari Saputro; Dhina Puspasari Wijaya
Indonesian Journal of Business Intelligence (IJUBI) Vol 5, No 2 (2022): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v5i2.2659

Abstract

The death rate in the world per year is 17.9 million due to cardiovascular disease, including heart and blood vessel disorders. This needs to be given more attention to anticipate the possible risk of a heart attack. One of the contributions in the field of technology to provide useful information about the risk of heart disease is by using a data processing approach or data mining technique by classifying the vulnerability to heart disease risk. The classification method used is Support Vector Machine and Naïve Bayes. The classification method will be carried out in a comparative process and the method that has the best accuracy will be sought. The scenarios used are 2 test scenarios, namely dividing the training data by 20% in scenario 1 and 40% in scenario 2. The final results of the research obtained are the best accuracy in the Support Vector Machine with scenario 1 of 87%.
Analisis Performa Algoritma Convolutional Neural Networks Menggunakan Arsitektur LeNet dan VGG16 Musthofa Galih Pradana; Hilda Khoirunnisa
Indonesian Journal of Business Intelligence (IJUBI) Vol 6, No 2 (2023): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v6i2.3765

Abstract

Identifying a person's self-identity can be done by recognizing facial images, where faces can often represent a person's identity. Facial identification with technology can benefit the effectiveness efficiency and accuracy of data. This identification process can be used with the help of algorithms that will check digital images with the necessary detection results. One algorithm that can be applied in classifying and detecting gender through facial image algorithms is Convolutional Neural Networks. Convolutional Neural Network algorithms have various architectures that have advantages in each architecture. This study compared the process of identifying a person's face to obtain information in the form of gender. The models compared in this study are the LeNet model and the VGG16 model. The identification and detection process was carried out using 800 photos for data training with gender labeling data and 240 photos for testing data. A comparison of these two models is necessary to get the best final model result. The final results obtained from this study the best accuracy of both architectures was obtained in the VGG16 architecture which reached an average accuracy of 100 in several epochs compared to the VGG16 architecture at 0.925 in the 46th epoch. This is due to a Rectified Linear Unit (ReLU) on the VGG16 architecture which can minimize errors and saturation.
Deteksi Kemiripan Dokumen Menggunakan Cosine Similarity Berdasarkan Representasi Teks Count Vectorizer Dan TF IDF Pradana, Musthofa Galih; Irzavika, Nindy; Maulana, Nurhuda
Indonesian Journal of Business Intelligence (IJUBI) Vol 7, No 2 (2024): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v7i2.5170

Abstract

Tujuan mata kuliah skripsi atau tugas akhir menumbuhkan budaya berpikir kritis, dan menunjukan kemampuan untuk memecahkan permasalahan dengan konstruksi logis dari penelitian. Akan tetapi, dari banyaknya manfaat tersebut, ada beberapa permasalahan yang juga muncul dikarenakan mata kuliah ini. Plagiarisme adalah masalah umum. Mengambil karya orang lain, termasuk pendapat mereka sendiri, dan membuatnya seperti karya sendiri adalah plagiarisme. Langkah pertama dalam penggunaan teknologi adalah mendeteksi kesamaan dokumen sejak dini. Dalam hal ini, dokumen yang harus dikumpulkan oleh mahasiswa selama proses pengajuan judul skripsi mereka adalah abstrak. Ketika digunakan, algoritma cosine similarity adalah algoritma yang efisien secara komputasi karena sangat mudah dipahami dan dapat digunakan dengan data berskala besar. Penelitian ini dilakukan dengan dua pendekatan representasi teks yaitu dengan menggunakan TF-IDF dan Count Vectorizer. Data korpus yang digunakan dalam penelitian ini adalah 1600 data dokumen abstrak skripsi mahasiswa, dengan pengujian menggunakan 30 data untuk melihat kinerja algoritma cosine similarity dalam mendeteksi kesamaan dokumen abstrak. Hasil penelitian menunjukkan bahwa pendekatan representasi teks TF-IDF mendapatkan kesamaan di angka 7,72861 dan Count Vectorizer mendapatkan hasil di angka 16,85541 atau punya gap sebesar 9,1268 dengan keunggulan Count Vectorizer. Hal ini disebabkan Count Vectorizer menghitung frekuensi kata tanpa mempertimbangkan apakah kata tersebut umum atau jarang, sehingga kata-kata umum tetap berkontribusi penuh terhadap similarity.