Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Mono Background and Multi Background Datasets Comparison Study for Indonesian Sign Language (SIBI) Letters Detection using YOLOv8 Andriyanto, Teguh; Handayani, Anik Nur; Ar Rosyid, Harits; Wiryawan, Muhammad Zaki; Azizah, Desi Fatkhi; Liang, Yeoh Wen
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.3462

Abstract

The research in this paper focuses on the detection of Indonesian Sign Language System (SIBI) letters using the YOLOv8 object detection model. The study compares two datasets, one with mono-background (a simple, uniform background) and another with multi-background (complex and varied backgrounds). The research aims to evaluate how the complexity of image backgrounds affects the performance of the YOLOv8 model in detecting SIBI letters This study uses a dataset consisting of 24 SIBI letters (excluding J and Z due to the complexity of their gestures), sourced from Mendeley. The dataset was processed with and without data augmentation (rotation, brightness adjustments, blur, and noise) to test the model under various conditions. Four models were trained and tested: one using mono-background images, another using augmented mono-background images, a third using multi-background images, and a final model trained on augmented multi-background images. The results showed that the YOLOv8 model performed best with the multi-background dataset, achieving a precision of 0.995, recall of 1.000, F1 score of 0.997, and mAP50 of 0.994Adding to the model made it better at generalizing, but it took longer to train. The study finds that multi-background datasets with augmentation make the model much better at finding SIBI letters in real-world settings. This makes it a promising tool for projects that aim to improve communication for deaf people in Indonesia. The study suggests that more research should be done on augmentation techniques and bigger datasets to make detection more accurate. 
Co-Authors Abdullah, Dzulkifli Achmad Iffad Adhilaga, Hanif Aditya Galih Sulaksono, Aditya Galih Agung Bella Putra Utama Agusta Rakhmat Taufani Ahmad Adi Prasetyo Aji Prasetya Wibawa Akmal Vrisna Alzuhdi Ali M. Mohammad Salah Alqahtani, Mohammed S. Amalia Amalia Anie Yulistyorini Anik Nur Handayani Ardi Anugerah Wicaksana Aripriharta - Asa Luki Setiawan Asfani, Khoirudin Ashar, Muhammad Aulia Yahya Harindra Putra Aya Sofia Mufti Azhar Ahmad Smaragdina Azizah, Desi Fatkhi Brillianta Zayyan Muhammad Danang Rahmat Bachtiar Denny Kurniawan Diederik Rousseau Dyah Lestari Edwin Meinardi Trianto Elfonda Daffa Risqullah Elmiyadi Novia Farma Esther Irawati Setiawan Fajariani, Erna Fatma Yuniardini Fauzi, Rochmad Febrianto Alqodri Felix Andika Dwiyanto Ferdinand, Miftakhul Anggita Bima Gunawan Gunawan Gunawan Hakkun Elmunsyah Hartarto Junaedi Hendrawan Armanto Herman Thuan To Saurik Heru Wahyu Herwanto Joumil Aidil Saifuddin Khoiruddin Asfanie Khurin Nabila Kumalasari, Ira Kusuma Refa Haratama Liang, Yeoh Wen Lucyta Qutsyaning Rosydah M Baharuddin Yusuf Mohammad Musthofa Al Ansyorie Mohammad Yasser Chuttur Mokhtar , Norrima Binti Muchamad Andis Setiawan Muhammad Akbar Muhammad Iqbal Akbar Muhammad Naufal Farras Muladi Mursyit, Mohammad Mutyara Whening Aniendya Nastiti Susetyo Fanany Putri Novian Dwi syahrizal Hilmi Nur A’yuni Ramadhani Nur Hidayatullah Nur Sa’ida Kismurdiani Prasetyo, Ahmad Adi Prawidya, Della Murbarani Rahadyan Fannani Arif Sari, Tenty Luay Setumin , Samsul Shah Nazir Siti Sendari Suparman Syaad Patmanthara Teguh Andriyanto, Teguh Theodora Monica Timothy John Pattiasina Tinesa Fara Prihandini Utomo Pujianto Wahyu Irianto Wako Uriu Wiryawan, Muhammad Zaki Yudhistira, Moch Rajendra Yusmanto, Yunan Zaeni, Ilham Ari Elbaith