Claim Missing Document
Check
Articles

Found 12 Documents
Search

Meningkatkan Literasi-Numerasi melalui Asistensi Mengajar PKKM di SMA Celebes Global School Makassar Djam’an, Nurwati; Intan , Wirninda; Arwadi, Fajar; Sidjara, Sahlan; Khadijah, Khadijah
Jurnal Pengabdian Masyarakat Bangsa Vol. 3 No. 3 (2025): Mei
Publisher : Amirul Bangun Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59837/jpmba.v3i3.2326

Abstract

Program Asistensi Mengajar PKKM (Program Kompetisi Kampus Merdeka) di Celebes Global School, Kota Makassar, bertujuan untuk meningkatkan literasi dan numerasi siswa serta memberikan pengalaman langsung bagi mahasiswa Program Studi Pendidikan Matematika Universitas Negeri Makassar. Program ini melibatkan beberapa kegiatan, termasuk pembuatan mading 3 dimensi, pop-up book, one day one fact, dan scholarship corner. Pelaksanaan kegiatan berlangsung selama empat bulan melalui tahapan persiapan, pelaksanaan, evaluasi, serta pelaporan dan publikasi. Hasil evaluasi menunjukkan bahwa pendekatan yang kreatif, seperti mengembangkan visual menarik dapat memberikan pengalaman belajar yang berbeda sehingga meningkatkan minat baca serta pemahaman numerasi siswa. Program ini juga memberikan dampak positif yang signifikan bagi mahasiswa dalam meningkatkan keterampilan mengajar dan mempersiapkan mereka untuk menghadapi tantangan yang ada di dunia pendidikan. Keberhasilan pelaksanaan program ini tidak hanya mendukung kebijakan yang ada, tetapi juga menawarkan pendekatan pembelajaran yang interaktif, yang dapat dijadikan referensi untuk pengembangan program-program serupa di masa mendatang.
APPLICATION OF BACKPROPAGATION FOR FORECASTING OPEN UNEMPLOYMENT IN MAKASSAR CITY Syam, Rahmat; Sidjara, Sahlan; Abdullah, Adib Roisilmi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 4 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss4pp2359-2376

Abstract

Based on data from the Statistics Bureau of South Sulawesi Province, the open unemployment rate in Makassar City has remained consistently high over the past ten years, averaging 11.41%. This highlights a persistent labor market issue and positions Makassar as the leading contributor to the open unemployment rate in the province. To support effective policymaking and early intervention strategies, it is essential to forecast future unemployment trends based on historical data. Therefore, this study aims to forecast the open unemployment rate in Makassar City over the next five years using a machine learning approach. Among the available forecasting methods, the Backpropagation Artificial Neural Network (ANN) was selected due to its proven ability to model complex, non-linear relationships often found in socio-economic data. ANN is particularly effective in handling temporal dynamics without assuming linearity or stationarity, unlike traditional statistical models. In this study, the forecasting process involved data normalization, scenario-based data partitioning, ANN architecture design, and model training and testing. The model with the best performance consisted of 11 neurons in the input layer, 55 neurons in the hidden layer, and 1 neuron in the output layer, using 80% of the data for training and 20% for testing. This configuration yielded a forecasting accuracy of 91.896%, with a MAPE of 8.131% and an MSE of 0.003. The denormalized results forecast a steady decline in the open unemployment rate from 9.078% in 2023 to 7.248% in 2027, indicating a positive trend in employment. Nevertheless, it is important to acknowledge the limitations of forecasting models and the potential influence of external factors that may affect actual outcomes.