Claim Missing Document
Check
Articles

Found 35 Documents
Search

Pengembangan Sistem Deteksi Memakai Masker Menggunakan Open CV, Tensorflow dan Keras Johanes Christianto Tiku; Wahyu Andi Saputra; Novian Adi Prasetyo
JURIKOM (Jurnal Riset Komputer) Vol 9, No 4 (2022): Agustus 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i4.4739

Abstract

In 2020 the country had contracted the covid 19 virus. The very significant spread made the government have to issue regulations regarding the implementation of health protocols for wearing mask to inhibit the development of the covid 19 virus in the community in real time. By utilizing technological developments in the field of deeplearning and computer vision, this study aims to detect maskon people's faces based on the classification made in the system of wearing maskand not wearing memakai maskers. This study used tensorflow/hard, opencv and deeplearning to perform classification and detection on faces. Based on the results of the confusion matrix test using 100 test data with a group of 50 wearing maskand 50 not wearing memakai maskers, it resulted in 91% Accuracy to detect maskon the faceTRANSLATE with x EnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian //  TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//
Implementation of Spatial-Level Augmentation on Pneumonia Classification with Convolutional Neural Network Wahyu Andi Saputra
Building of Informatics, Technology and Science (BITS) Vol 4 No 2 (2022): September 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i2.2270

Abstract

Pneumonia is a disease with symptoms of difficulty breathing, fever, dry cough, and chest pain. As an indication that a person has COVID-19, it is necessary to immediately identify pneumonia by a doctor whether the lung X-ray image of the patient is classified as pneumonia or not. The importance of early diagnosis can reduce the risk of death in patients. Convolutional Neural Network is one of the fields of study in the realm of Computer Science that can perform image-based object classification. CNN can be used to identify pneumonia based on thorax images based on the features or features displayed on the image. One of the important elements in CNN is the amount of data that can be used for training, validation, and testing. Generally, the more data entered, the more learning material for the CNN system so that the system can classify more accurately. This study aims to measure the accuracy of the CNN model on thoracic-pneumonia images with spatial level augmentation changes. Image augmentation is implemented to increase image variance with initial data of 5856 images. The applied augmentations are Affine, Flip, Pixel Dropout, Random Size Crop, and Shift Scale Rotate. The stages of this research are manually grouping images, implementing augmentation on images, applying training-validation-testing on CNN, and analyzing the output results of the developed system. By using 5 types of augmentation, the dataset used as learning material can be increased up to 5x the original amount. From the research carried out, it was found that the Random-sized Crop type augmentation gave the highest accuracy value of 94.719% or an increase of 3.808% from the non-augmentation testing data. From this research, it is hoped that studies related to augmentation can be a reference regarding the type of augmentation process and its results in finding the CNN accuracy value, especially in the case of pneumonia classification
Klasifikasi Pneumonia Dengan Deep Learning Faster Region Convolutional Neural Network Arsitektur VGG16 dan ResNet50 Hafidz Daffa Hekmatyar; Wahyu Andi Saputra; Cepi Ramdani
InComTech : Jurnal Telekomunikasi dan Komputer Vol 12, No 3 (2022)
Publisher : Department of Electrical Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/incomtech.v12i3.15112

Abstract

Pneumonia merupakan infeksi paru-paru yang melibatkan alveoli (kantung udara) dan disebabkan oleh mikroba, termasuk bakteri, virus, atau jamur yang dapat menyebabkan peradangan pada area bronkiolus dan alveoli. Pneumonia merupakan penyakit yang berbahaya apabila tidak ditangani dengan tepat. COVID-19 merupakan virus baru yang menyerang paru-paru dan diindikasikan dengan adanya pneumonia. Penting bagi pakar kesehatan untuk memberikan perawatan tepat jika ditemukan pneumonia pada kasus COVID-19. Namun demikian, kendala yag dihadapi dari citra toraks adalah mendeteksi adan-ya indikasi pneumonia dalam mengklasifikasikan toraks berpneumonia. Tujuan dari penelitian ini adalah mengklasifikasikan objek yang terdeteksi sebagai penumonia dengan menggunakan Faster R-CNN, yakni teknik yang mengkombinasikan algoritme Region Proposal Network (RPN) dan Convolutional Neural Network (CNN). Penelitian ini menggunakan metode Faster R-CNN untuk mendeteksi adanya pneumonia pada pasien COVID-19 dengan menggunakan dua arsitektur CNN yang berbeda yaitu arsitektur VGG16 dan ResNet50. Dari pengujian yang yang diterapkan pada citra toraks berpneumonia, model VGG16 mempunyai mAP (mean Average Precision) tertinggi yaitu sebesar 17,7% sedangkan ResNet mempunyai nilai mAP sebesar 16,2%. Sedangkan, implementasi menggunakan 500 data x-ray paru-paru pneumonia COVID-19, arsitektur VGG16 mempunyai nilai akurasi tertinggi yaitu sebesar 85,8% sedangkan ResNet50 mempunyai nilai akurasi sebesar 84%. Dengan dikembangkannya penelitian ini diharapkan dapat membantu tenaga medis dalam mendeteksi pneumonia secara dini pada pasien yang terkena virus COVID-19 dengan tepat.
Requirements Engineering of Village Innovation Application Using Goal-Oriented Requirements Engineering (GORE) Condro Kartiko; Ariq Cahya Wardhana; Wahyu Andi Saputra
JURNAL INFOTEL Vol 13 No 2 (2021): May 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i2.602

Abstract

The delay in the absorption of village funds from the central government to the village government is due to the village government's difficulty preparing village development innovation programs. The innovation tradition will grow if the cycle of transformation of knowledge and acceptable practices from one village to another, especially villages with similar conditions and problems, can run smoothly. For the process of exchanging knowledge and experiences between villages to run smoothly, it is necessary to codify best practices in a structured, documented, and disseminated manner. This research aims to design an application that functions as a medium for sharing knowledge about the use of village funds through government innovation narratives. The application is expected to become a reference for villages to carry out innovative practices by conducting replication studies and replicating acceptable practices that other villages have done. Therefore, it is necessary to have a system requirements elicitation method that can explore the village's requirements in sharing knowledge so that the resulting system is of high quality and by the objectives of being developed. There are several Goal-Oriented Requirements Engineering (GORE) methods used, such as Knowledge Acquisition in Automated Specification (KAOS) and requirements engineering based on business processes. In this research, the KAOS method was demonstrated as the elicitation activity of a village innovation system. Then the results were stated in the Goal Tree Model (GTM). Model building begins with discussions with the manager of the village innovation program to produce goals. The goals are then broken down into several sub-goals using the KAOS method. The KAOS method is used for the requirements elicitation process resulting in functional and non-functional requirements. This research is the elicitation of the requirement for the village innovation system so that it can demonstrate the initial steps in determining the requirements of the village innovation system before carrying out the design process and the system creation process. The results of this requirement elicitation can be used further in the software engineering process to produce quality and appropriate village innovation applications.
IMPLEMENTASI ALGORITMA CAMELLIA UNTUK KEAMANAN CITRA MEDIS PADA SISTEM RADIOLOGI BERBASIS WEB Zaenury Dhany Wibowo; Ipam Fuaddina Adam; Wahyu Andi Saputra
Jurnal Informatika Polinema Vol. 6 No. 4 (2020): Vol 6 No 4 (2020)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v6i4.296

Abstract

Dalam bidang radiologi, citra medis dikategorikan sebagai data yang sensitif dan privasi untuk pasien rumah sakit. Citra Medis yang digunakan untuk keperluan radiologi melalui jaringan internet yang disetujui aman. Penelitian ini menawarkan algoritma Camellia sebagai alternatif keamanan citra pada sistem radiologi berbasis web. Cara penggunaan operasi pada blok chiper adalah prosedur yang diperlukan untuk memproses blok agar menjadi lebih aman. Mode operasi yang dapat digunakan di dalam algoritma Camellia adalah ECB, CBC, CFB, dan OFB. Implementasi Camellia dengan mode operasi tersebut, memiliki hasil yang berbeda. Untuk evaluasi, beberapa parameter analisis keamanan enkripsi yang dilakukan adalah visual, histogram, dan entropi. Sementara kualitas gambar dekripsi diperlukan melalui Peak Signal to Noise Ratio (PSNR). Selain itu, implementasi algoritma Camellia dalam mode pengoperasian disetujui. Eksperimen dilakukan terhadap data citra medis berformat jpg. Pengujian sistem menggunakan blackbox, di mana hasil pengujian sistem radiologi dapat berjalan dengan baik. Hasil Pengukuran menunjukkan mode Operasi ECB dan OFB memiliki kualitas citra yang lebih baik. Sedangkan mode operasi waktu rumit ECB lebih cepat dari tiga mode operasi lainnya. Namun, untuk hasil enkripsi enkripsi dengan keamanan yang baik, perlu dihindari mode operasi ECB. Hasil Pengukuran menunjukkan mode Operasi ECB dan OFB memiliki kualitas citra yang lebih baik. Sedangkan mode operasi waktu rumit ECB lebih cepat dari tiga mode operasi lainnya. Namun, untuk hasil enkripsi enkripsi dengan keamanan yang baik, perlu dihindari mode operasi ECB. Hasil Pengukuran menunjukkan mode Operasi ECB dan OFB memiliki kualitas citra yang lebih baik. Sedangkan mode operasi waktu rumit ECB lebih cepat dari tiga mode operasi lainnya. Namun, untuk hasil enkripsi enkripsi dengan keamanan yang baik, perlu dihindari mode operasi ECB.
IMPLEMENTASI FACE RECOGNITION PADA SISTEM PRESENSI MAHASISWA MENGGUNAKAN METODE SSD DAN LBPH Yasykur, Muhammad Fauzan; Saputra, Wahyu Andi
Jurnal Pendidikan Teknologi Informasi (JUKANTI) Vol 7 No 1 (2024): JURNAL PENDIDIKAN TEKNOLOGI INFORMASI (JUKANTI) EDISI APRIL 2024
Publisher : Program Studi Pendidikan Informatika, Universitas Citra Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37792/jukanti.v7i1.1207

Abstract

ABSTRAK Perkembangan teknologi di era digitalisasi telah memberikan dampak signifikan pada berbagai sektor, termasuk pendidikan tinggi. Inovasi teknologi gencar dilakukan untuk mendukung kegiatan perkuliahan, salah satunya adalah sistem presensi mahasiswa. Beberapa diantaranya yang sudah diterapkan adalah teknologi RFID pada Kartu Tanda Mahasiswa dan scan kode QR. Namun keduanya masih memiliki celah kekurangan seperti risiko terjadinya kehilangan KTM, penyalahgunaan kode QR atau bahkan fenomena titip absen. Penggunaan sistem biometri seperti face recognition menjadi alternatif inovasi untuk meningkatkan keabsahan presensi mahasiswa. Penelitian ini mengimplementasikan teknologi face recognition secara real time pada sistem presensi mahasiswa berbasis web dengan mengombinasikan metode Single Shot Multibox Detector (SSD) dan Local Binary Pattern Histogram (LBPH). Metode SSD digunakan sebagai pendeteksi wajah (face detector) dan LBPH sebagai pengenal wajahnya (face recognizer). Penelitian ini melibatkan pengujian akurasi dalam mendeteksi dan mengenali wajah mahasiswa berdasarkan parameter jarak, jumlah wajah dalam satu frame dan posisi wajah. Pada pengujian deteksi wajah untuk parameter jarak radius 30 cm hingga 100 cm dan posisi wajah diperoleh akurasi 100%. Pengujian pengenalan wajah berdasarkan posisi wajah memperoleh akurasi mencapai 85% dan presisi 87%, pengenalan wajah berdasarkan jarak memperoleh akurasi sebesar 85% dan presisi sebesar 86%. ABSTRACT  The development of technology in the era of digitalization has had a significant impact on various sectors, including higher education. Technological innovations have been actively pursued to support academic activities, one of which is the student attendance system. Some of the technologies that have been implemented include RFID technology on Student Identification Cards and QR code scanning. However, both methods still have shortcomings, such as the risk of losing the Student Identification Card, QR code misuse, or even the phenomenon of proxy attendance. The use of biometric systems, such as face recognition, has become an alternative innovation to enhance the validity of student attendance. This research implements real-time face recognition technology in a web-based student attendance system by combining the Single Shot Multibox Detector (SSD) and Local Binary Pattern Histogram (LBPH) methods. The SSD method is used as the face detector, and LBPH is used as the face recognizer. This research involves testing accuracy in detecting and recognizing student faces based on distance parameters, number of faces in one frame and face position. In face detection testing for radius distance parameters of 30 cm to 100 cm and face position, 100% accuracy was obtained. Testing facial recognition based on facial position obtained accuracy of 85% and precision of 87%, facial recognition based on distance obtained accuracy of 85% and precision of 86%.
Penerapan Model Dick and Carrey pada Pembelajaran PAI di MA Al-Falah Nagreg Nugraha, Mulyawan Safwandy; Saputra, Wahyu Andi
TSAQOFAH Vol 4 No 5 (2024): SEPTEMBER
Publisher : Lembaga Yasin AlSys

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58578/tsaqofah.v4i5.3603

Abstract

This research uses a qualitative approach by utilizing interviews and observations as the main instruments to collect in-depth data regarding the application of the Dick and Carrey Model in Islamic Religious Education (PAI) learning at MA Al-Falah Nagreg. The research results highlight the dominant learning pattern in schools, which relies more on conventional methods with teacher presentation of material and student involvement through note-taking and limited discussion sessions. Factors that influence the decision not to adopt the Dick and Carrey Model, such as practical obstacles in its implementation, established school policies, financial constraints, and considerations of educational values and philosophy, are highlighted in the eval_uation of school obstacles. Furthermore, this article details alternative learning models that can be implemented to increase the effectiveness of PAI learning at MA Al-Falah, including project-based approaches, cooperative learning, and the flipped classroom concept, with the hope of being able to overcome these obstacles and be in line with the characteristics and values of educational values embraced by the school.
Kurikulum Madrasah sebagai Penyeimbang Dampak Negatif Perkembangan Teknologi Digital Nugraha, Mulyawan Safwandy; Saputra, Wahyu Andi
TSAQOFAH Vol 4 No 5 (2024): SEPTEMBER
Publisher : Lembaga Yasin AlSys

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58578/tsaqofah.v4i5.3643

Abstract

The development of digital technology has a significant impact on various sectors of life, including education. This paper explores the role of the madrasah curriculum as a counterbalance to the negative effects of digital technology development. Through an analysis of the madrasah context, including characteristics of the madrasah, students, educators, facilities, partnerships, potential funding sources, and socio-cultural environment, it was found that the madrasah curriculum needs to identify and explore differentiating strengths according to its characteristics. The learning plan for madrasahs includes the formulation of Learning Outcomes, learning objectives, assessments, and learning resources involving both extracurricular activities and projects that strengthen student profiles. Additionally, planning priority programs for madrasahs is an important focus. In the classroom, the learning plan includes the preparation of teaching modules, teaching materials, and other documentation reflecting the core learning objectives. The madrasah curriculum plays a central role as a counterbalance by integrating religious values, wise digital literacy, and moral development. With this approach, the madrasah curriculum shapes comprehensive Islamic individuals who are able to face modern technological challenges while remaining steadfast in traditional values. Thus, the madrasah curriculum becomes an essential instrument in shaping a balanced and adaptive generation in this digital era.
Evaluasi Usability Aplikasi TukuPOS dengan Menggunakan Metode Heuristic Evaluation Prasetyo, Novian Adi; Saputra, Wahyu Andi; Bahtiar, Arief Rais
JTERA (Jurnal Teknologi Rekayasa) Vol 8, No 1: June 2023
Publisher : Politeknik Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31544/jtera.v8.i1.2022.33-40

Abstract

Tujuan dari penelitian ini adalah untuk mengevaluasi kegunaan aplikasi TukuPOS. Aplikasi tersebut dimaksudkan untuk secara nyata mendukung pelaku UMKM dalam melakukan manajemen produk, manajemen stok dan transaksi penjualan. Usability yang buruk dapat menghalangi penggunaan dalam menggunakan aplikasi terutama dalam hal transaksi dimana transaksi penjualan harus dapat dilakukan dengan cepat agar konsumen tidak menunggu terlalu lama. Heuristic Evaluation digunakan untuk mengumpulkan dan menganalisis data tentang kegunaan aplikasi berdasarkan heuristik Nielsen. Terdapat 25 permasalah yang ditemukan oleh responden. Berdasarkan pernyataan Heuristic Evaluation menunjukan beberapa permasalah terdapat pada 7 pernyataan dari 10 pernyataan. Peringkat keparahan berkisar dari 0 hingga 4 adalah pada rata-rata 2,4 yaitu pada help and doumentation. Aplikasi dinyatakan layak digunakan oleh pelaku UMKM namun dengen terdapat perbaikan minor yang harus dilakuan, berdasarkan sepuluh pernyataan sepuluh heuristic evaluation terdapat dua pernyataan yang perlu segara diperbaiki yaitu pada help and documentation dengan rata-rata 2,4 dan user control and freedom dengan rata-rata 1. Selain berfokus pada pernyataan diatas perbaikan juga perlu dilakukan dengan melihat permasalahan yang dialami oleh responden, pada tabel 3 menunjukan bahwa terdapat 25 masalah yang ditemukan oleh responden.
Penerapan Maqomah sebagai Pengembangan Materi Pembelajaran Al-Quran Hadits di Madrasah Aliyyah Al-Falah Nagreg Saputra, Wahyu Andi; Nugraha, Mulyawan Safwandy
ALSYS Vol 4 No 5 (2024): SEPTEMBER
Publisher : Lembaga Yasin AlSys

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58578/alsys.v4i5.3604

Abstract

This research aims to analyze implementation of Maqomah as a development of Quran and Hadith learning materials at Madrasah Aliyyah Al-Falah Nagreg. The research method used is a descriptive qualitative approach. The study will be conducted at Madrasah Aliyyah Al-Falah Nagreg and will involve an initial literature review to understand the theories and concepts underpinning the research. Subsequently, the research will go through several phases, including preparation, data collection through classroom observations, interviews with teachers and students, and analysis of documents and teaching materials. The data obtained will be analyzed using qualitative text analysis techniques. This research aims to provide a deeper understanding of the application of Maqomah in Quran and Hadith learning at Madrasah Aliyyah Al-Falah Nagreg and its impact on student understanding. The research findings are expected to provide valuable insights into the use of this method in the context of Islamic education in madrasah. Thus, this research can make a significant contribution to improving the quality of religious education in an Islamic educational environment.