Claim Missing Document
Check
Articles

Found 37 Documents
Search

PENERAPAN DATA MINING UNTUK KLASIFIKASI PENJUALAN BARANG TERLARIS MENGGUNAKAN METODE DECISION TREE C4.5 Ni Wayan Wardani; Putu Gede Surya Cipta Nugraha; Eddy Hartono; I Wayan Dharma Suryawan; Ayu Manik Dirgayusari; I Wayan Darmadi; Gede Surya Mahendra
Jurnal Teknologi Informasi dan Komputer Vol 8, No 3 (2022): Jurnal Teknologi Informasi dan Komputer
Publisher : LPPM Universitas Dhyana Pura

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRACTThis research aims to find the best accuracy from the decision tree model so that the model can perform well for bestselling sales classification and make the model usable and integrated with other systems through the Application Programming Interface (API). This analysis uses the decision tree method and the Cross-Industry Standard Process for Data Mining (CRISP-DM) as the research process flow. The research results that have been obtained in the early stages of the model can produce an accuracy of 90.85% in RapidMiner modeling. In comparison, in python, the resulting accuracy is 92.83%, but when the parameter tuning process is carried out the highest accuracy produced reaches 95.68% on RapidMiner while in modeling using python the quality of accuracy is 95.09% and based on the deployment process, the prediction function of the model can be accessed properly through the Application Programming Interface (API).Keywords: Data Mining, Decision Tree C4.5, ClassificationABSTRAKPenelitian ini bertujuan untuk mencari akurasi terbaik dari model Decision Tree sehingga model dapat menghasilkan performa yang baik untuk tujuan klasifikasi penjualan terlaris dan juga membuat model dapat digunakan dan terintegrasi pada sistem lain melalui Application Programming Interface (API). Analisis ini menggunakan metode decision tree, dan Cross-Industry Standard Process for Data Mining (CRISP-DM) sebagai alur proses penelitian. Hasil penelitian yang telah didapatkan pada tahap awal model dilatih dapat menghasilkan akurasi 90.85% pada pemodelan RapidMiner, sedangkan pada python akurasi yang dihasilkan 92.83%, akan tetapi pada saat proses tuning parameter dilakukan akurasi paling tertinggi yang dihasilkan mencapai 95.68% pada RapidMiner sedangkan pada pemodelan menggunakan python menghasilkan akurasi sebesar 95.09%, dan berdasarkan proses deployment, fungsi prediksi model dapat dengan baik diakses melalui Application Programming Interface (API).Kata Kunci: Data Mining, Decision Tree C4.5, Klasifikasi
RANCANG BANGUN SISTEM INFORMASI ABSENSI DAN PENGGAJIAN PADA UD. MITRACO UTAMA BERBASIS WEB Nyoman Arya Wiradarma; Ayu Manik Dirgayusari; Ni Wayan Wardani
Jurnal Teknologi Informasi dan Komputer Vol 8, No 3 (2022): Jurnal Teknologi Informasi dan Komputer
Publisher : LPPM Universitas Dhyana Pura

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRACTUD Mitraco Utama is one of the companies in the chemical industry or chemical industry such as perfume,hand sanitizer and others, and the company currently has around 40 employees where employees perform attendance using manual attendance machines and the administration section every month must recap Reset all employee attendance data manually and then calculate employee salaries with Microsoft Excel using a system like this, in a way that is prone to data calculation errors which can also affect the employee salary, where the calculation of the salary becomes longer which can cause delays in processing and receiving employee salaries. And there are also other problems, namely the lack of speed and accuracy in finding employee salary data for a certain period or annual period. Therefore improvements were made by creating an attendance and payroll information system to make it easier to record attendance data, calculate employee salaries through attendance data obtained every working day, and make it easier to find these data. Attendance and payroll information system testing is carried out using the black box testing method to find out that the system has produced the expected output.Keywords: information system, attendance salary, webABSTRAKUD Mitraco Utama merupakan salah satu perusahaan di bidang chemical industry atau industri bahan kimia seperti parfum, hand sanitizer dan lain-lain, dan perusahaan saat ini sudah memiliki sekitar 40 pegawai dimana pegawai melakukan absensi dengan menggunakan mesin absensi manual dan bagian admnisitrasi setiap bulannya harus merekap ulang semua data absensi pegawai secara manual lalu kemudian melakukan perhitungan gaji pegawai dengan Microsoft Excel dengan menggunakan sistem seperti ini, dengan cara seperti rentan akan terjadinya kesalahan perhitungan data yang juga dapat berpengaruh pada gaji karyawan tersebut, dimana perhitungan gaji menjadi lebih lama yang bisa meyebabkan keterlambatan dalam memproses dan penerimaan gaji pegawai. Dan terdapat juga permasalahan lainnya yaitu kurangnya kecepatan dan ketepatan dalam mencari data gaji pegawai dalam periode tertentu atau periode tahunan. Dari permasalahan tersebut memunculkan gagasan untuk membuat sistem informasi absensi dan penggajian agar mempermudah dalam melakukan proses pencatatan data absensi, perhitungan gaji pegawai melalui data absensi yang didapat setiap hari kerja, dan akan mempermudah dalam hal mencari data-data tersebut. Pengujian sistem informasi absensi dan penggajian dilakukan dengan metode black box testing untuk mengetahui sistem telah menghasilkan output yang diharapkan.Kata Kunci: Sistem informasi, absensi penggajian, web
Pelatihan Fotografi (Motrek) Bagi Guru SMP Dalam Upaya Revitalisasi Bahasa Daerah Untuk Tunas Bahasa Ibu di Balai Bahasa Provinsi Bali I Nyoman Agus Suarya Putra; Aniek Suryanti Kusuma; Ayu Gede Willdahlia; Desak Dwi Utami Putra; I Ketut Sutarwiyasa; Putu Satria Udyana Putra; Ni Wayan Wardani; Ni Made Mila Rosa Desmayani; Putu Gede Surya Cipta Nugraha; Eddy Hartono; Gede Surya Mahendra
JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) Vol 3 No 3 (2022)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/jurpikat.v3i3.962

Abstract

The declining use of the Balinese language, especially among the younger generation, is something that the Bali Provincial Language Center needs to pay attention to immediately holding a language revitalization program. One of the activities in the regional language revitalization program is a photography training activity (motrek) for junior high school teachers which aims to revitalize language starting from the school realm, namely teachers and students. His hope in everyday life is not far from photography. The resulting photos can be given a description in Balinese, especially when uploading to social media. The training lasted for 4 days, attended by 75 State Middle School teachers. The training was filled with delivery of material, discussions, questions and answers and hands-on practice using each participant's cell phone. The results of the posttest showed an increase in understanding of the material by 48% from the results of the previous pretest.
Sistem Informasi Inventory pada PT. Djaya Buah Bersinar Denpasar Berbasis Web Desmayani, Ni Made Mila Rosa; Wardani, Ni Wayan; Nugraha, Putu Gede Surya; Indrawan, I Putu Yoga; Mahendra, Gede Surya
INSERT : Information System and Emerging Technology Journal Vol. 3 No. 2 (2022)
Publisher : Prodi Sistem Informasi, FTK, Undiksha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/insert.v3i2.54696

Abstract

Djaya Buah Bersinar merupakan suatu perusahaan yang bergerak di bidang penjualan yang kegiatan utamanya adalah menjual buah impor, yang penjualan perharinya mencapai 200 sampai 500 dus buah impor tergantung dari musim yang ada. Kegiatan perusahaan dalam pengolahan data persediaan barang masih dicatat secara manual, sehingga sering terjadi permasalahan, seperti selisih perhitungan stok barang, pengecekan barang satu persatu ke Gudang, ataupun permasalahan administratif lainnya. Pemesanan barang dilakukan dengan memperkirakan jumlah barang di Gudang akan hampir habis. Solusi yang dapat diberikan berdasarkan permasalahan yang dihadapi, realisasi sebuah sistem informasi inventory berbasis web yang bersifat First-In-First-Out. Terdapat 4 pengguna yang tercakup pada sistem yaitu Pimpinan, Gudang, Supplier dan Karyawan. Sistem ini menggunakan waterfall model dan menggunakan bahasa pemrograman HTML, PHP dan terintegerasi pada basis data menggunakan MySQL. Sistem yang diusulkan telah membantu perusahaan dalam dalam melakukan pemesanan barang, penerimaan barang, permintaan barang, pengeluaran barang dan pengiriman barang serta dapat membuat laporan. Hasil pengujian dengan metode black box testing menunjukkan bahwa sistem yang dibangun telah sesuai dengan perancangan.
Analisis Penggunaan Lego dalam Pembelajaran Sejarah Perang Kusamba untuk Anak Usia Dini Putra, I Nyoman Agus Suarya; Nugraha, Putu Gede Surya Cipta; Wardani, Ni Wayan
Jurnal Bahasa Rupa Vol. 7 No. 3 (2024): Jurnal Bahasa Rupa Agustus 2024
Publisher : Prahasta Publisher (manage by: DRPM Institut Bisnis dan Teknologi Indonesia)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31598/bahasarupa.v7i3.1569

Abstract

There is limited research that combines three things, namely, early childhood, technology and local wisdom. Current conventional education requires digital-based technology with all its advantages. Historical knowledge is best instilled as knowledge in early childhood in the age range of 4-6 years. The knowledge taken in this research is knowledge from a hero statue located in Kusamba village in the form of a woman holding a palm leaf named I Dewa Agung Istri Kanya. This research aims as an educational tool. Through the means of animated films, the Lego game is hoped to be able to provide historical education and be able to become a visual attraction in the educational process. The method in this research is a descriptive qualitative method by visualizing illustrations of historical toy stories of heroes that are close to children's tastes. Next, exploration and experimentation were carried out on the work by designing Lego with Balinese characters and clothing and creating the setting at the scene, namely Goa Lawah and Puri Klungkung. The production technique uses stop motion techniques. The process of making an animated film is carried out in three stages, namely pre-production, production, and post-production. Testing was carried out on material experts and media experts as well as parents who educate children aged 4-6 years. The results of 87% of respondents stated that it was suitable as a learning medium. The results of anecdotal notes on a sample of young children showed an increase in knowledge from not yet developing to developing according to expectations.
Decision Tree for Bitcoin Price Prediction Based on Market Factors Wardani, Ni Wayan; Nugraha, Putu Gede Surya Cipta; Erawati, Kadek Nonik
Jurnal Sistem Informasi dan Komputer Terapan Indonesia (JSIKTI) Vol 7 No 2 (2024): December
Publisher : INFOTEKS (Information Technology, Computer and Sciences)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33173/jsikti.199

Abstract

The volatile nature of Bitcoin poses significant challenges for accurate price prediction, which is critical for informed decision-making by investors and policymakers. This study explores the application of decision tree algorithms to predict Bitcoin prices using a dataset comprising historical data on Bitcoin prices, market capitalization, and trading volumes. The research emphasizes feature engineering techniques, including derived metrics such as rolling averages and volatility indices, and integrates ensemble methods like Random Forest and Gradient Boosting to enhance predictive performance. The decision tree model achieved an accuracy of 53%, demonstrating its capability to capture general trends in Bitcoin price movements, particularly during high volatility periods. The study highlights the importance of key features such as the Relative Strength Index (RSI) and Moving Averages (MA14) while identifying limitations in predicting price decreases. Recommendations for future research include integrating external data sources, such as sentiment analysis and macroeconomic indicators, and exploring advanced modeling techniques to improve robustness and accuracy. This research contributes to the growing field of cryptocurrency price prediction by providing interpretable and actionable insights into market dynamics. The findings offer valuable tools for analysts and investors navigating the complexities of the cryptocurrency market.
Analisa Komparasi Algoritma Decision Tree C4.5 dan Naïve Bayes untuk Prediksi Churn Berdasarkan Kelas Pelanggan Retail Wardani, Ni Wayan; Ariasih, Ni Kadek
International Journal of Natural Science and Engineering Vol. 3 No. 3 (2019): October
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (894.76 KB) | DOI: 10.23887/ijnse.v3i3.23113

Abstract

Pelanggan adalah salah satu aset utama bagi perusahaan ritel. Perusahaan harus dapat mengenali bagaimana karakter pelanggan mereka sehingga mereka dapat mempertahankan pelanggan yang sudah ada agar tidak berhenti membeli dan pindah ke perusahaan ritel yang bersaing (churn). Salah satu model yang tepat untuk mengenali karakter pelanggan adalah model RFM (Recency, Frekuensi, Moneter). Model RFM mampu menghasilkan kelas pelanggan dan di setiap kelas pelanggan dapat dianalisis atau diprediksi dengan konsep data mining apakah pelanggan tetap sebagai pelanggan atau churn. Data yang digunakan berasal dari data pelanggan dan data penjualan di UD. Mawar Sari. Kelas pelanggan UD Mawar Sari yang dihasilkan dari model RFM adalah Dormant, Everyday, Golden dan Superstar. Konsep data mining dengan membangun model prediksi dalam penelitian ini menggunakan algoritma Decision Tree C4.5 dan Naïve Bayes. Di semua kelas pelanggan kinerja Algoritma Naïve Bayes lebih baik daripada Algoritma Decision Tree C4.5 dengan Recall 95,92%, Precision 84,15%, dan Accuracy 83,49% dan kelas pelanggan yang memiliki potensi churn tinggi adalah Dormant B, Dormant E, dan Dormant F.Kata Kunci: Prediksi Churn, RFM, C4.5, Naïve Bayes
Stemming Teks Bahasa Bali dengan Algoritma Enhanced Confix Stripping Wardani, Ni Wayan; Nugraha, Putu Gede Surya Cipta
International Journal of Natural Science and Engineering Vol. 4 No. 3 (2020): October
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (352.234 KB) | DOI: 10.23887/ijnse.v4i3.30309

Abstract

Masih banyak yang mengalami permasalahan saat melakukan stemming dimana belum mampu melakukan stemming dengan tepat pada beberapa kata untuk aturan peluluhan prefix P3, P4, P5, P10, P11, dan P12. Tujuan penelitian ini adalah untuk mengkaji efektivitas algoritma Enhanced Confix Stripping Stemmer (ECS) terhadap stemming Bahasa Bali. Data yang digunakan dalam penelitian ini adalah 376 akar kata dalam bahasa Bali yang terdiri dari 240 kata yang mengandung prefiks, 17 akar kata yang mengandung infiks dan 199 akar kata yang mengandung sufix. Hasil penelitian ini menunjukkan bahwa Enhanced Confix Stripping dapat meningkatkan performansi yang sebelumnya memiliki akurasi. dari hanya 77,82% menjadi 96,94% dengan tingkat kesalahan 3,06% dan memperbaiki kesalahan yang semula berjumlah 120 sampai 20 kesalahan. Berdasarkan hasil penelitian, dapat ditarik simpulan bahwa algoritma ECS Stemmer dapat memperbaiki kesalahan yang dilakukan oleh metoda Rule Based Approach 
IMPLEMENTASI MEDIA PEMBELAJARAN DIGITAL SAD KERTI PADA TK DWIJENDRA DENPASAR I Nyoman Agus Suarya Putra; Putu Gede Surya Cipta Nugraha; Ni Wayan Wardani
Sewagati Vol. 4 No. 1 (2025): Sewagati
Publisher : Fakultas Teknik dan Informatika Universitas PGRI Mahadewa Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59819/sewagati.v4i1.4808

Abstract

The Bali provincial government is focusing on improving education based on local wisdom, specifically Nangun Sad Kerti Loka Bali. Sad Kerti, which means six efforts to maintain the balance of the universe, is used in early childhood education. However, traditional methods, such as oral knowledge and teacher demonstrations, are not effective in conveying local wisdom. To address this, a community service activity has been introduced using Sad Kerti digital learning media, focusing on the story of Dang Hyang Nirartha. The activity uses demonstration, storytelling, and question-and-answer sessions. Teacher and student assessments were conducted, and it was found that Sad Kerti learning media is suitable for formulating learning objectives that meet student needs. This digital Sad Kerti learning media is highly feasible for use, as it helps children develop a deeper understanding of their identity and cultural heritage.
Measurement of the Similarity of Indonesian Papers on One Journal Topic with the Naive Bayes Algorithm and Vector Space Model Ni Luh Wiwik Sri Rahayu Ginantra; Ni Wayan Wardani
IJCONSIST JOURNALS Vol 1 No 1 (2019): September
Publisher : International Journal of Computer, Network Security and Information System

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (718.078 KB) | DOI: 10.33005/ijconsist.v1i1.7

Abstract

Abstract— One way to maintain the quality of scientific work in Indonesia is by checking articles before they are published. Checking before the publication was done so that the similarity level is not high because the published papers can be quoted to cause a high level of similarity. The next problem is the importance of grouping topic papers, where papers to be checked should have the same category as comparative papers. In this study, to classify the topic of the journal using the Naïve Bayes algorithm and to measure the similarity of papers using the Vector Space Model method. Naïve Bayes algorithm can better classify the test data with the .docx file format than to the test data in the .pdf file format. The results of the calculation of text similarity detection by the Vector Space Model can reach 90% and above for test data with the .docx file format, while for test data with the .pdf file format the calculation results by the Vector Space Model are on average less than 90%. The results of the calculation of text similarity detection by the Vector Space Model method are also strongly influenced by training data. The more complete and complex of the training data, then more valid the results of the Vector Space Model performance testing