Claim Missing Document
Check
Articles

Found 8 Documents
Search

ANALISIS PENGUASAAN KATA BANTU “LE” DAN “GUO” PADA MAHASISWA UNIVERSITAS TANJUNGPURA PROGRAM STUDI MANDARIN Kurniawan, Rico; Thamrin, Lily; Khiong, Bun Yan
Jurnal Pendidikan dan Pembelajaran Khatulistiwa Vol 7, No 10 (2018): Oktober 2018
Publisher : Jurnal Pendidikan dan Pembelajaran Khatulistiwa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (766.632 KB)

Abstract

Abstrack“Le” and “Guo” are the examples of auxiliary words frequently appeared in mandarin language, and also an important point as well as the difficult point in the learning of mandarin language. In studying process, the frequency of the occurence of both words is quite high.The aim of this research is to know the differences and the similarities of the words “Le” and “Guo” and also to know the understanding condition of the students of University of Tanjungpura Chinese Language Major Batch 2016 about “Le” and “Guo”. This research used literature study and also used the test method to test the understanding of the students of University of Tanjungpura Chinese Language Major Batch 2016. The test results indicate that the total percentages of the understanding of students’ accuracy about “Le” and “Guo” are 68,75% and 72%. In conclusion, the results show the positive attitude towards the students’ mastery in the use of the words “Le” and “Guo”.Keywords : “Le” and “Guo”, the condition of student’s understanding
Keunggulan dan Tantangan dalam Penggunaan Computer Vision untuk Diagnosis Pneumonia Pediatri: A Systematic Review Fadhilah, Hafshah Farah; Kurniawan, Rico
Jurnal Biostatistik, Kependudukan, dan Informatika Kesehatan Vol. 5, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pneumonia pediatrik merupakan penyebab utama kematian anak-anak di bawah usia lima tahun. Teknologi computer vision menawarkan potensi besar untuk meningkatkan diagnosis pneumonia pediatrik dengan menganalisis gambar radiografi dada secara otomatis. Penelitian ini menggunakan metode systematic literature review dengan pendekatan PRISMA, meninjau artikel dari database IEEE Xplore, Science Direct, dan Scopus yang diterbitkan antara tahun 2020 hingga 2024. Studi ini menemukan bahwa algoritma deep learning seperti Convolutional Neural Networks (CNN) menunjukkan akurasi tinggi dalam diagnosis pneumonia pediatrik. Namun, tantangan seperti kebutuhan akan data berkualitas tinggi, interpretasi hasil AI, dan integrasi teknologi ini dengan sistem kesehatan yang ada masih perlu diatasi. Penggunaan teknologi computer vision memiliki potensi besar untuk meningkatkan diagnosis pneumonia pediatrik, namun tantangan yang ada harus diatasi untuk implementasi yang efektif.
Manfaat Penggunaan Mobile Health (m-Health) Dalam Pencatatan dan Pelaporan Kesehatan Ibu Permatasari, Ayu Diah; Trihandini, Indang; Bahar, Ryza Jazid; Kurniawan, Rico
Jurnal Biostatistik, Kependudukan, dan Informatika Kesehatan Vol. 1, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kesehatan ibu masih menjadi masalah kesehatan prioritas. Salah satu upaya yang sudah dilakukan pemerintah adalah melakukan pencatatan dan pelaporan kesehatan ibu, yang diberi nama Pemantauan Wilayah Setempat Kesehatan Ibu dan Anak (PWS KIA). Namun, PWS KIA tersebut dinilai mengalami banyak kendala. Salah satu penyebabnya yaitu pelaksanaan PWS KIA yang masih menggunakan paper-based. Tujuan dari penelitian ini adalah untuk mengetahui manfaat penggunaan mHealth dalam pencatatan dan pelaporan kesehatan ibu. Metode yang digunakan adalah scoping review dari literatur yang diterbitkan lima tahun terakhir di pubmed dan google scholar yang membahas mengenai mHealth dalam pencatatan dan pelaporan kesehatan ibu. Hasil penelitian menunjukkan bahwa dari lima literatur yang terpilih, empat literatur menyebutkan manfaat mHealth pada data yang dihasilkan dan kualitas pelayanan, sedangkan satu literatur lainnya lebih berfokus pada manfaat mHealth pada kualitas pelayanan saja. Kesimpulannya adalah mHealth memiliki berbagai manfaat dalam pencatatan dan pelaporan kesehatan ibu. Oleh karena itu, diharapkan pengelola program kesehatan ibu dapat segera merancang dan menerapkan mHealth sebagai sistem pencatatan dan pelaporan kesehatan ibu supaya dapat mengatasi berbagai permasalahan yang ada saat ini.
Hubungan Kesiapan Sumber Daya Manusia dan Infrastruktur Teknologi dengan Penerapan Aplikasi Digital health di Puskesmas Kota Semarang Tahun 2023 Apriliantika, Wayan Wahyu; Prabawa, Artha; Kurniawan, Rico; Fitriyani, Lia
Jurnal Biostatistik, Kependudukan, dan Informatika Kesehatan Vol. 4, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini membahas kesiapan sumber daya terkait sumber daya manusia (SDM) dan infrastruktur teknologi (IT) terhadap penerapan digital health dengan tujuan untuk mengetahui kekuatan dan arah hubungan kesiapan sumber daya dengan penerapan digital health di Puskesmas Kota Semarang Tahun 2023. Desain studi yang digunakan cross-sectional dengan analisis korelasi dan regresi linier sederhana menggunakan data survei Tim HIRC FKM UI 2023. Sampel penelitian ini sebanyak 36 responden dari 9 puskesmas yang dipilih secara purposive sampling dengan responden yang terlibat adalah kepala puskesmas, staf administrasi, dokter/bidan/perawat, dan staf IT. Hasil yang didapatkan berupa SDM di Puskesmas Kota Semarang cukup baik dan IT sudah sangat baik. Digital health di Puskesmas Kota Semarang sudah sangat siap diterapkan. Sebanyak 7 dari 9 Puskesmas masuk dalam kategori sangat siap untuk penerapan digital health. Hasil bivariat menunjukkan bahwa SDM dengan penerapan digital health memiliki hubungan sangat kuat (r=0,964) dan berpola positif dengan nilai koefisien determinasi sebesar 0,930. Infrastruktur teknologi dengan penerapan digital health juga memiliki hubungan sangat kuat (r=0,899) dan berpola positif dengan nilai koefisien determinan 0,808. Disimpulkan bahwa SDM dan IT memiliki hubungan sangat kuat dan berpola positif terhadap penerapan digital health, sehingga Puskesmas Kota Semarang sudah sangat siap menerapkan digital health.
Tinjauan Sistematis Terhadap Implementasi Rekam Medis Elektronik Pada Pelayanan Rawat Jalan Diastri, Anggraina; Kurniawan, Rico
J-REMI : Jurnal Rekam Medik dan Informasi Kesehatan Vol 6 No 3 (2025): June
Publisher : Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25047/j-remi.v6i3.5891

Abstract

The implementation of Electronic Medical Records (EMR) in Indonesia presents a strategic opportunity to improve the quality and efficiency of healthcare services by optimizing access to medical information and strengthening coordination among healthcare professionals. However, its implementation still faces major challenges, particularly in terms of data security and workforce readiness. This study aimed to evaluate the benefits, challenges, and impacts of EMR adoption on medical practice and healthcare delivery. The research was conducted using a systematic literature review method with a PRISMA approach. A total of 4,475 articles were identified from four major databases: PubMed, Google Scholar, ScienceDirect, and Scopus. After screening titles, abstracts, and full texts, 10 articles met the inclusion criteria and were further analyzed. The findings indicated that EMR can accelerate access to patient information, enhance coordination among medical teams, and reduce the risk of documentation errors. This review suggests that EMR has significant potential to improve the efficiency, accuracy, and quality of outpatient services. However, the success of its implementation largely depends on technical readiness, human resource capacity, and infrastructure support. Further efforts should focus on improving digital literacy among healthcare workers, strengthening data security, and developing infrastructure to support the optimal implementation of EMR systems.
Determinan Kejadian Berat Badan Lahir Rendah (BBLR) Pada Bayi di Provinsi Sulawesi Selatan: Analisis Data SKI 2023 Al-Muqhni, Muhammad Kyrgizt; Kurniawan, Rico
Jurnal Ners Vol. 9 No. 4 (2025): OKTOBER 2025
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jn.v9i4.48761

Abstract

Berat badan lahir rendah (BBLR) masih menjadi tantangan kesehatan masyarakat global, khususnya di negara berkembang seperti Indonesia. Prevalensi BBLR di Indonesia menunjukkan tren menurun dan stagnan dalam beberapa tahun terakhir. Provinsi Sulawesi Selatan memiliki angka prevalensi BBLR lebih tinggi dibandingkan dengan rata-rata prevalensi BBLR Indonesia berdasarkan data Survei Kesehatan Indonesia (SKI) tahun 2023. Penelitian ini berujuan untuk mengidentifikasi determinan yang berhubungan dengan kejadian BBLR pada bayi di Provinsi Sulawesi Selatan berdasarkan data SKI 2023. Penelitian ini menggunakan desain potong lintang (cross-sectional) dengan sumber data menggunakan data sekunder dari SKI 2023. Sampel berjumlah 824 bayi yang memenuhi kriteria inklusi. Analisis data dilakukan dengan menggunakan modul complex samples pada perangkat lunak IBM SPSS Statistics versi 25. Uji bivariat dilakukan dengan chi-square (p-value <0,05), kemudian variabel independen dengan p-value <0,25 dimasukkan dalam analisis multivariat yang menggunakan regresi logistik. Prevalensi BBLR pada bayi umur 0-12 bulan sebesar 8,6%. Faktor yang berhubungan sugnifikan dengan BBLR, yaitu riwayat KEK ibu (p-value <0,001) dan usia kehamilan saat lahir (p-value <0,001), setelah dilakukan pengendalian terhadap sejumlah variabel kontrol. BBLR dipengaruhi oleh berbagai determinan ibu dan sosial. Intervensi yang berfokus pada pencegahan kelahiran prematur serta intervensi gizi dan pendidikan nutrisi bagi ibu hamil. Kata Kunci: BBLR, Bayi, Sulawesi Selatan, SKI 2023
A Multidimensional Welfare Status of Leprosy Patients Living in a Suburban Area Irawati, Yunia; Menaldi, Sri Linuwih SW; Harini, Melinda; Wahyuni, Luh Karunia; Alwin, Wanarani; Dwiranti, Astari; Menaldi, Adhityawarman; Luzanil, Sonny Tirta; Matsurah, Qaishum; ., Dadun; Kurniawan, Rico; Ruwaida, Ida; Wicaksono, Gunawan; Sahid, Muhammad Hidayat; Rahmayanti, Febrina; Priscilia, Florentina; Fitriana, Anis; Rahayu, Tri; Susiyanti, Made; Andayani, Gitalisa; Bani, Anna Puspitasari; Daniel, Hisar; Lestari, Yeni Dwi
ASEAN Journal of Community Engagement Vol. 5, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Leprosy has a high incidence of physical complications that will impact directly the physiological, economic, and social status of patients. Indonesia has a high burden of the disease, and several leprosy settlements are still spread in the country. Neglasari Village, Sitanala, Tangerang serves as one of the places of residence of people who have had leprosy. A health service initiative known as Identifikasi Tanda-Tanda Mata, Ekstremitas, dan Kulit pada Kusta (KATAMATAKU) was launched as a collaboration of health services among multi-departments (ophthalmology, dermatovenereology, and medical rehabilitation). Sitanala has a relatively high incidence of people who have had leprosy with disabilities of the hand, foot, and eye. As a continuation of this health service and combined with the efforts to improve the welfare of leprosy patients, in November 2019, a multidisciplinary program titled KATAMATAKU Universitas Indonesia, was conducted. This program aimed to determine the demographic data regarding the health, psychological, social, and economic status of the leprosy population at Sitanala The project consisted of a collaborative anti-stigma program by the Faculty of Psychology, Public Health, Social and Political Sciences, Cultural Sciences, Administrative Sciences, and Vocational Educational Program; thematic health program, which supports the improvement of physical abilities and empowerment of former leprosy patients, by the Faculty of Medicine, Dentistry, Nursing, and Pharmacy; thematic economics program, which aims to increase the economic capacity of the leprosy community, by the Faculty of Economics and Business, Mathematics and Natural Sciences, and Engineering. This program enabled the construction of a multidimensional management model, in which every aspect plays important roles to improve the patients’ quality of life.
Harnessing Sociodemographic and Anthropometric Insights to Predict Type 2 Diabetes Risk: A Machine Learning Approach Kurniawan, Rico; Yunanda, Rezki; Assetya Pratiwi, Okky
Jurnal Biostatistik, Kependudukan, dan Informatika Kesehatan Vol. 5, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The complexity of diabetes makes early diagnosis and effective management challenging for healthcare settings. This study developed and evaluated models using machine learning algorithms to predict the risk of diabetes. The data were primarily sourced from the Indonesia Family Life Survey (IFLS). Diabetes status was identified using A1c whole blood sample values (A1c WBS ³5.7%). Sociodemographic and anthropometric factors were set as predictors, most of which were significantly correlated with diabetes status. Discrete machine learning algorithms such as decision tree, k-nearest neighbors (KNN), random forest (RF), naïve Bayer, support vector machine (SVM), and neural network (MLP) were applied to construct and compare prediction models for classification. MLP model exhibited the highest performance with AUC 67%, Accuracy 87.1%, F1 Score 87.1%, Recall 87.1% and Precision 82.4%. Overall, machine learning models were found highly viable in predicting disease outcomes with increasing accuracy. Their usage would allow healthcare professionals to make more informed patient care decisions. Future research initiatives should attempt to further enhance these models.