p-Index From 2021 - 2026
5.744
P-Index
This Author published in this journals
All Journal Jurnal Statistika Universitas Muhammadiyah Semarang JMPM: Jurnal Matematika dan Pendidikan Matematika Desimal: Jurnal Matematika BAREKENG: Jurnal Ilmu Matematika dan Terapan Dinamisia: Jurnal Pengabdian Kepada Masyarakat JTAM (Jurnal Teori dan Aplikasi Matematika) Jurnal Penelitian dan Pengabdian Kepada Masyarakat UNSIQ Jambura Journal of Mathematics Jurnal Matematika UNAND Variance : Journal of Statistics and Its Applications ILKOMNIKA: Journal of Computer Science and Applied Informatics InPrime: Indonesian Journal Of Pure And Applied Mathematics Jurnal Statistika dan Aplikasinya Jambura Journal of Mathematics Education Indonesian Journal of Applied Research (IJAR) JAMBURA JOURNAL OF PROBABILITY AND STATISTICS Jurnal Diferensial Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi International Journal of Health, Economics, and Social Sciences (IJHESS) Griya Journal of Mathematics Education and Application Unnes Journal of Mathematics Journal of Fundamental Mathematics and Applications (JFMA) Research in the Mathematical and Natural Sciences Pattimura International Journal of Mathematics (PIJMath) Bulletin of Applied Mathematics and Mathematics Education Jurnal Riset Mahasiswa Matematika Jurnal Pengabdian Pada Masyarakat Indonesian Journal of Mathematics and Applications Hexagon: Jurnal Ilmu dan Pendidikan Matematika Journal of Mathematics, Computation and Statistics (JMATHCOS) Indonesian Journal of Computational and Applied Mathematics
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : ILKOMNIKA: Journal of Computer Science and Applied Informatics

Optimization of LightGBM Model with Bayesian Optimization for Malware Detection Kasim, Afrianto Pratama; Nasib, Salmun K.; Hasan, Isran K.; Wungguli, Djihad; Yahya, Nisky Imansyah
ILKOMNIKA Vol 7 No 1 (2025): Volume 7, Number 1, April 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/ilkomnika.v7i1.722

Abstract

Cyberattacks through malware on Android devices continue to rise, making accurate detection crucial. This research optimizes the LightGBM model using Bayesian Optimization to enhance accuracy and efficiency in detecting Android malware. A feature selection mechanism based on Attention Mechanism is applied to select the most relevant features for classification. The dataset used comes from the Canadian Institute for Cybersecurity (CIC) and consists of 17,804 Android applications, with a balanced distribution between malware and normal applications. The dataset is split into ratios of 80%:20%, 75%:25%, and 70%:30%. Feature selection reduces the number of features from 9503 to 300, 500, and 1000. The LightGBM model is then optimized with Bayesian Optimization to fine-tune parameters such as learning rate, number of iterations, and maximum number of leaves. The model's performance is evaluated using accuracy, precision, and recall metrics. Experimental results show that the model achieves 96,99% accuracy, 97,30% precision, and 96,70% recall with an 80%:20% dataset split and 1000 features. The combination of Attention Mechanism and Bayesian Optimization effectively improves processing efficiency without compromising performance.