Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Engineering and Technological Science (JAETS)

Twitter Social Media Conversion Topic Trending Analysis Using Latent Dirichlet Allocation Algorithm Musliadi K H; Hazriani Zainuddin; Yuyun Wabula
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 1 (2022): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v4i1.1143

Abstract

In Indonesia, Twitter is one of the most widely used social media platforms. Because of the diverse and frequently shifting message patterns on this social media, it is extremely challenging and time-consuming to manually identify topics from a collection of messages. Topic modeling is one method for obtaining information from social media. The model and visualization of the results of modeling topics that are discussed on social media by the Makassar community are the goals of this study. The Latent Dirichlet Allocation (LDA) algorithm is used to model and display the results of this study. The modeling results indicate that the eighth topic is the most frequently used word in a conversation. In the meantime, the 7th and 6th topics emerged as the conversation's core based on the spread of the words with the highest term frequency. The study's findings led the researchers to the conclusion that in the Makassar community's social media discussions, capitalization and visualization using the LDA method produced the words with the highest trend and the topic with the highest term frequency.