Claim Missing Document
Check
Articles

PERBEDAYAAN ANAK JALANAN MELALUI PELATIHAN PERBAIKAN KOMPUTER DI KOTA BANDAR LAMPUNG Suhendro Yusuf Irianto; Sushanty Saleh; Indera Indera
J-ABDI: Jurnal Pengabdian kepada Masyarakat Vol. 2 No. 8: Januari 2023
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53625/jabdi.v2i8.4535

Abstract

Permasalahan yang dihadapi oleh anak jalanan yang ada di rumah singgah adalah kurang dana dan kurangnya tenaga atau sukarelewan yang secara konsisten membantu dan membimbing mereka untuk meninggalkan dunia jalanan. Tujuan dengan adanya program pengabdian ini adalah memberikan motivasi kepada anak jalanan untuk merubah jalan hidup yang sekarang mereka jalani dengan memberikan bekal ketrampilan. Target dari kegiatan ini adalah membuat anak jalan mempunyai ketrampilan merakit dan memperbaiki komputer desktop. Dengan pelatihan dan bimbingan ini maka anak jalanan memiliki kemampuan dalam merakit dan memberbaiki komputer sehingga mereka dapat membuka usaha sebagai teknisi komputer dengan membuka kios service komputer. Metode yang digunakan dalam kegiatan ini adalah dengan pelatihan dan bimbingan, dimana pelatihan dilakukan dengan praktek sebanyakn 85% dan teori 15% dengan total jam sebanyak 240 jam selama enam bulan, dan 4 bulan adalah bimbingan dalam membuka kios service komputer.
Peningkatan UMKM Olahan Ikan Teri Minang Rua di Desa Klawi Bakauhuni Lampung Selatan Indera Indera; Suhendro Yusuf Irianto; Sushanty Saleh; Endang Astitin
NEAR: Jurnal Pengabdian kepada Masyarakat Vol. 2 No. 2 (2023): NEAR
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/nr.v2i2.748

Abstract

Pengabdian Kepada Masyarakat (PKM) merupakan perwujudan dari Tri Dharma Perguruan Tinggi yaitu Pengabdian kepada Masyarakat. PKM ini dilakukan di UMKM olahan ikan Teri Minang Rua pada desa Klawi Bakauhuni Lampung Selatan. Dengan kegiatan ini dapat membantu para pelaku UMKM Minang Rua dalam meningkatkan UMKM . Masalah yang terdapat di UMKM Olahan Ikan Teri Minang Rua, Bakauheni, Lampung Selatan sebagai berikut kemasan yang masih kurang menarik sehingga kurang cocok dengan produk, pemesanan dan penjualan masih dilakukan langsung di tempat. Hasil yang diperoleh untuk memberikan solusi dan inovasi pada UMKM Olahan Ikan Teri sebagai berikut: pembuatan stiker logo produk yang menarik serta peningkatan kemasan lebih baik dari sebelumnya supaya konsumen tertarik , melakukan pemesanan dan penjualana produk dapat dilakukan secara online melalui sosial media maupun offline di Pantai Minang Rua. Serta pembuatan link tree yang bertujuan untuk memudahkan konsumen jika ingin memesan produk secara online melalui sosial media dan dapat menjangkau pemasaran produk lebih luas
Refining Content-Based Segmentation for Prediction of Coffee Bean Quality Suhendro Yusuf Irianto
Lontar Komputer : Jurnal Ilmiah Teknologi Informasi Vol 14 No 2 (2023): Vol. 14, No. 2 August 2023
Publisher : Institute for Research and Community Services, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/LKJITI.2023.v14.i02.p04

Abstract

Coffee has substantial economic value and is a key foreign exchange source for numerous nations, including Indonesia. Moreover, it is a primary livelihood for many of the country's farmers. Recently, there have been challenges in accurately predicting the quality of coffee beans, primarily due to time, inconsistency, and imprecision issues. Consequently, this study delves into the application of region-growing segmentation and content-based image retrieval (CBIR) techniques to enhance the prediction of coffee bean quality. The proposed hybrid approach, which combines region growing and CBIR methods, aims to improve the precision for forecasting cacao bean quality. Additionally, the research introduces an automated tool that employs these hybrid techniques for quality prediction. The study conducted experiments using a dataset of 400 premium and 400 low-quality coffee beans sourced from the University of Syiah Kuala in Indonesia. The results of the experiments demonstrate a commendable precision rate of 85.4%, showcasing significant improvement compared to certain previous studies.
Pelatihan Manajemen Usaha Bagi Pokdarwis Kawasan Strategis Teluk Lampung Kabupaten Pesawaran Hakim, Lukmanul; Irianto, Suhendro Yusuf; Nursiyanto, Nursiyanto; Saleh, Sushanty
NEAR: Jurnal Pengabdian kepada Masyarakat Vol. 3 No. 2 (2024): NEAR
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/nr.v3i2.1322

Abstract

Wisata bahari di kawasan strategis Teluk Lampung kabupaten Pesawaran memiliki potensi yang besar untuk wisata provinsi Lampung. Manajemen usaha merupakan salah satu upaya mengatur segala hal dalam menjalankan usaha sehingga dapat mencapai tujuan yang diharapkan. Manajemen usaha yang dimaksudkan antaranya yaitu manajemen sumber daya manusia, manajemen pemasaran, dan manajemen keuangan. Pokdarwis merupakan kelompok masyarakat sadar wisata di kabupaten Pesawaran. Kegiatan pengabdian ini bertujuan untuk memberikan pelatihan manajemen usaha sebagai upaya untuk mengedukasi pengelolaan usaha bagi Pokdarwis Kawasan strategis pesisir Teluk Lampung. Hasil kegiatan ini adalah Pokdarwis memiliki kemampuan dalam manajemen usaha yang baik untuk pengelolaan jangka panjang objek wisata Bahari yang dikelola dan peningkatan usaha Pokdarwis.
Evaluation of Information Security at the Radin Inten II Lampung Meteorological Station Using the KAMI Index Ardiansyah, Ardiansyah; Irianto, Suhendro Yusuf; Hasibuan, M. Said
Bioscientist : Jurnal Ilmiah Biologi Vol 12, No 2 (2024): December
Publisher : Department of Biology Education, FSTT, Mandalika University of Education, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/bioscientist.v12i2.12498

Abstract

Information security is a way to protect information assets from various potential threats. BMKG is a Non-Departmental Government Institution (LPND) in Indonesia whose main duties involve carrying out government duties in the fields of meteorology, climatology and geophysics. In connection with delivering information services appropriately and precisely to stakeholders, the Radin Inten II Lampung Meteorological Station needs to carry out an independent assessment in terms of security to evaluate the information system in each work unit, with the aim of understanding the level of readiness and maturity of information security. This research aims to measure the level of information security maturity at the Radin Inten II Lampung Meteorological Station. The analysis method used in this research is using the KAMI Index version 5.0 based on the ISO/IEC 27001:2022 standard. The research results indicate that the implementation of the ISO 27001:2022 standard in the information system of the Radin Inten II Lampung Meteorological Station is considered good. The total score obtained reached 591 based on analysis and questionnaires using the KAMI Index. With this score, the Radin Inten II Lampung Meteorological Station information system is categorized at level III, which indicates that some improvements are still needed.
MEASUREMENT OF ELECTRONIC LEARNING PERFORMANCE USING THE TECHNOLOGY ACCEPTANCE MODEL (TAM) METHOD AT THE VOCATIONAL SCHOOL OF PATRIA GADINGREJO Eko Hendrawan; Suhendro Yusuf Irianto; Fitria Fitria
Jurnal TAM (Technology Acceptance Model) Vol 12, No 1 (2021): Jurnal TAM (Technology Acceptance Model)
Publisher : LPPM STMIK Pringsewu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56327/jurnaltam.v12i1.1029

Abstract

The application of electronic learning is carried out in the learning process at Patria Gadingrejo Vocational School to determine the factors that are still weak or require improvement and the factors that are considered successful or strong in assisting the application of electronic learning in the learning process. This study results in Aydin and Tasci's ELR model questionnaire consisting of 37 statements grouped into four factors. These factors are human, self-development, technology, and innovation as well as six questions for the perception of the usefulness of electronic learning. The location of this research is at Patria Gadingrejo Vocational School. Respondents in this study were the principal, vice principal of the curriculum section, the school treasurer, the person in charge of the school computer laboratory, and teachers who are experts in e-learning. Data processing is carried out to examine the factors that influence the perceived usefulness of e-learning by using regression analysis and also the level of readiness for the application of electronic learning at Patria Gadingrejo Vocational School with Aydin and Tasci's ELR model. Aydin Tasci's electronic learning readiness (ELR) model applied to Patria Gadingrejo Vocational School gives results that are not ready for the application of electronic learning and requires a slight improvement.
MONITORING LAND SURFACE CONDITION TOWARD PESAWARAN DISTRICT USING WATERSHED SEGMENTATION METHOD Ida Ayu Puspita Sari; Suhendro Yusuf Irianto
Jurnal TAM (Technology Acceptance Model) Vol 11, No 2 (2020): Jurnal TAM (Technology Acceptance Model)
Publisher : LPPM STMIK Pringsewu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56327/jurnaltam.v11i2.956

Abstract

This research will produce a segmentation using watershed segmentation. This method will be used to segment the aerial image of an area in Pesawaran district. The image of Pesawaran district that will be taken is an image for the past 5 years, more precisely the image from 2015-2019. The accuracy of this experiment will be tested using a method called ROC (receiver operational characteristics) and studying the changes in the land surface from year to year using watershed segmentation, then the image will change into a color pattern that represents each area such as forest areas and human settlements.
Sentiment Analysis on Reviews of the Documentary Film "Dirty Vote" Using Lexicon-Based and Support Vector Machine Approaches Ramadhan, Apri; Irianto, Suhendro Yusuf
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 1 (2025): June 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i1.34603

Abstract

The general election (Pemilu) is a state agenda in Indonesia held every five years. During this democratic event, citizens have the right to freely and fairly choose their leaders. Rules and procedures related to elections are regulated under Law No. 7 of 2017 on General Elections. One of the provisions in this law is the electoral silence period. In the 2024 election, February 11–13, 2024, is designated as the electoral silence period. During this period, Article 287, Paragraph 5 of the Election Law states that print media, online media, social media, and broadcasting institutions are prohibited from disseminating news, advertisements, or any content that benefits or harms election participants. On February 11, 2024, during the silence period, a video titled "Dirty Vote" was uploaded on YouTube, drawing significant public attention. Its release during the silence period sparked controversy and prompted various opinions in the video’s comment section. Sentiment analysis is a suitable method to determine whether public opinions regarding the video are predominantly positive, negative, or neutral. This study utilized the Support Vector Machine (SVM) classification method with different kernels, including linear and non-linear (polynomial, RBF, and sigmoid). To accelerate labeling for large datasets, a Lexicon-Based approach was employed. The combination of SVM and Lexicon-Based methods demonstrated that the linear kernel outperformed others, achieving evaluation metrics of 91.1% accuracy, 91.1% recall, 90.9% precision, and 90.8% F1-score.
PENGENALAN SAINS DATA UNTUK MENINGKATKAN LITERASI DATA DAN KESIAPAN KARIER DIGITAL SISWA SEKOLAH MENENGAH ATAS Karnila, Sri; Kurniawan, Hendra; Irianto, Suhendro Yusuf; Muktiawan, Danang Ade; Septiawan, Yuda; Safitri, Egi; Nurjoko, Nurjoko
JMM (Jurnal Masyarakat Mandiri) Vol 9, No 4 (2025): Agustus
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jmm.v9i4.31940

Abstract

Abstrak: Pengenalan sains data di tingkat sekolah menengah memiliki peran penting dalam membekali siswa menghadapi era digital yang kian berkembang. Kegiatan pengabdian ini dirancang untuk menumbuhkan pemahaman siswa terhadap konsep dasar sains data sekaligus mendorong kesiapan mereka dalam meniti karier di bidang digital. Pelatihan dilangsungkan secara tatap muka di Institut Informatika dan Bisnis Darmajaya dan melibatkan 26 siswa dari empat sekolah di Bandar Lampung. Materi pelatihan meliputi pengantar teori sains data, praktik pengolahan dan visualisasi data serta pengantar bahasa pemrograman Python, hingga pengenalan awal pembelajaran mesin. Sebagai bentuk evaluasi, peserta mengikuti pre-test dan post-test dengan menjawab soal pilihan ganda sebanyak 25 soal. Hasil penilaian menunjukkan bahwa mayoritas siswa mengalami peningkatan kemampuan setelah pelatihan yang diberikan. Persentase peningkatan pengetahuan diperoleh melalui analisis hasil melalui pre-test dan post-test. Peningkatan diperoleh, dimana 18 dari 26 siswa menjawab benar soal atau persentase sebesar 69,23%, meningkat 30,73% dari nilai sebelumnya sebesar 38,5%. Hal ini mencerminkan respon yang sangat positif terhadap isi materi dan fasilitas pendukung yang tersedia. Secara keseluruhan, kegiatan ini memberikan pengalaman belajar yang membekas dan bermanfaat, serta dapat dijadikan model untuk pelatihan serupa di masa mendatang.Abstract: The introduction of data science at the high school level has an important role in equipping students to face the growing digital era. This service activity is designed to foster students' understanding of the basic concepts of data science while encouraging their readiness to pursue careers in the digital field. The training was held face-to-face at Darmajaya Informatics and Business Institute and involved 26 students from four schools in Bandar Lampung. The training materials included an introduction to data science theory, data processing and visualization practices and an introduction to the Python programming language, to an early introduction to machine learning. As a form of evaluation, participants took a pre-test and post-test by answering 25 multiple choice questions. The assessment results showed that the majority of students experienced an increase in ability after the training provided. The percentage of knowledge improvement was obtained through analysis of results through pre-test and post-test. An increase was obtained, where 18 out of 26 students answered the questions correctly or a percentage of 69.23%, an increase of 30.73% from the previous value of 38.5%. This reflects a very positive response to the material content and supporting facilities available. Overall, this activity provided a memorable and useful learning experience, and can be used as a model for similar training in the future.
Optimizing Student Depression Prediction Using Particle Swarm Optimization and Random Forest Effendi, Mukhammad Khoirul; -, Sriyanto; Irianto, Suhendro Yusuf; Fauzi, Chairani; Vitriani, Yelfi
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 1 (2025): June 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i1.35954

Abstract

Student mental health is a growing concern due to increasing academic pressure, social demands, and economic factors affecting their well-being. Depression, a common issue among students, significantly impacts academic performance and overall quality of life. Therefore, early detection and accurate prediction of student mental health conditions are essential to provide timely interventions. This study aims to improve the accuracy of depression prediction among university students by integrating Particle Swarm Optimization (PSO) for feature selection with Random Forest (RF) as the classification model. The dataset used is the Student Depression Dataset from Kaggle, consisting of 27,900 respondents with 18 features related to demographic, academic, and psychological factors. Data preprocessing includes handling missing values, normalization, categorical encoding, and feature selection using PSO. The model is trained and evaluated using 10-Fold Cross-Validation. Experimental results show that PSO-optimized Random Forest outperforms the standard Random Forest model. The optimized model achieves an accuracy of 84.08%, precision of 82.79%, recall of 77.79%, and an AUC-ROC score of 0.912, improving classification performance. These findings demonstrate that PSO effectively enhances feature selection, leading to better classification accuracy. This study contributes to the development of a more accurate and efficient machine learning model for detecting student depression. By optimizing feature selection, this approach reduces computational complexity while maintaining high predictive performance. Future research can explore hybrid optimization techniques such as Genetic Algorithm (GA) or Differential Evolution (DE) to further enhance model generalization across different datasets.