Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Artificial Intelligence and Engineering Applications (JAIEA)

Optimization of Social Assistance Recipient Determination using Gradient Boosting Algorithm Windi Herlita Vidila; Rudi Kurniawan; Saeful Anwar
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.773

Abstract

This research aims to classify social assistance recipients to ensure the accuracy of aid distribution by utilizing the Gradient Boosting algorithm on RapidMiner. The data used is data on residents who are categorized as receiving and not receiving social assistance in Cicadas village with a total dataset consisting of 670 entries with 18 attributes that will be divided equally between eligible and ineligible recipients. This research uses KDD (Knowledge Discover in Database) analysis which includes the stages of data selection, pre-processing, transformation, modeling, and interpretation of results. This research uses a quantitative approach, focusing on the distribution of datasets in a ratio of 70:30 with a stratified sampling technique for training and testing purposes. The experimental results show that the selected method is effective in classifying recipients by obtaining an accuracy of 91.67%, this accuracy result can be relied upon to support decision-making in social assistance distribution. The findings underscore the potential of machine learning in optimizing social welfare initiatives by improving target accuracy and ensuring aid reaches the rightful recipients.
Optimizing the Classification Model for Plant Medicine Supplies Using the Decision Tree Algorithm at the Anugrah Tani Shop, Brebes Regency: Inggris Saeful Amri; Rudi Kurniawan; Saeful Anwar
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.825

Abstract

Retail businesses in the agricultural industry often face difficulties in estimating inventory needs, especially plant medicines which are important for protecting plants from pests and diseases. The lack of an accurate inventory prediction system can cause stock discrepancies, as happened at the Anugrah Tani Store, Brebes Regency, thereby disrupting operations and customer satisfaction. This research uses the Decision Tree classification technique to increase the accuracy of predicting the need for plant medicine supplies, with a clustering approach using the K-Means algorithm to determine the optimal K value through the Davies-Bouldin Index (DBI) calculation. A DBI value of -0.065 indicates good cluster quality with an optimal K of 2, where Cluster 0 has high inventory needs (1138 data) and Cluster 1 has low needs (4 data). The analysis results show that the accuracy level of the Decision Tree model is 98.25%, which is quite high. This model is not only able to predict inventory patterns accurately but also provides in-depth insights to support stock decision making. This research proves that the Decision Tree algorithm can help inventory management with a faster response to customer needs, while contributing to the development of machine learning-based classification models for the agricultural and retail sectors.
Optimizing Grocery Sales Data Grouping Using the Fuzzy C-Means Algorithm: Case Study of Nafhan Mart Store Nafhan Khairuddin Fathin; Rudi Kurniawan; Saeful Anwar
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.842

Abstract

The sale of staple food products at Nafhanmart Store, Cirebon Regency, includes essential household items such as rice, cooking oil, sugar, and flour, which maintain stable demand as basic necessities. This study focuses on improving sales clustering models at Nafhanmart using the Fuzzy C-Means (FCM) algorithm, a prominent method in data mining. Key factors influencing sales include price, sales volume, demand, and remaining stock. Accurate clustering analysis is vital for strategic inventory management and profit maximization. The research applies the Knowledge Discovery in Database (KDD) methodology, encompassing data selection, preprocessing, transformation, FCM implementation, and evaluation using the Davies-Bouldin Index (DBI). Attributes analyzed include price, sales volume, demand, and remaining stock. The FCM algorithm clusters data based on patterns, with DBI evaluating clustering quality and determining optimal clusters. Data analysis and visualization were conducted using RapidMiner. Results show that the FCM algorithm achieves optimal clustering quality with a DBI score of 0.452 for two clusters, outperforming three clusters (DBI 0.474) and four clusters (DBI 0.536). Price and demand are identified as critical factors influencing clustering outcomes. These findings enhance the clustering model, offering actionable insights for inventory management and sales strategy, while showcasing the FCM algorithm's adaptability for other SMEs to support data-driven decision-making.