Claim Missing Document
Check
Articles

PENGGUNAAN APRIORI PADA REKOMENDASI PAKET MENU DAN DILENGKAPI FITUR CHATBOT Yosua Pandapotan Sianipar; Viny Christanti Mawardi; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 10, No 1 (2022): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/jiksi.v10i1.17821

Abstract

The growth of the food and beverage industry is the pillar of national and manufacturing economic growth. At present the food and beverage sector continues to be excellent, especially in the tourism industry sector which develops culinary tourism. In the sale of food and beverages in the world of tourism, it is made to attract the attention of consumers by making promotional packages. This promotional package aims to attract buyers to want to buy products from a restaurant. One way to make a promotion is by using association rules. Association rules are the results that will issue a combination of numbers from each transaction data. This was done to help increase the sales of Ling Ling Restaurant. To find the results of association rules whose combinations are used for promotion, here we use the Apriori method. The results that come out will be in the form of a food or drink menu that has been combined into two, three, or more according to the number of association rules that came out by going through the Apriori method. The results of the association rules that come out later will be displayed on the chatbot display contained in the program. The chatbot here will display the results of the association rules obtained using the Apriori method and also display several question options using questions that have been created in the chatbot.
SISTEM PENJUALAN PADA PD. SAHATI BERBASIS WEB MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING UNTUK PREDIKSI STOK DAN ALGORITMA APRIORI UNTUK REKOMENDASI PRODUK George Timotius Harefa; Bagus Mulyawan; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 7, No 2 (2019): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (218.734 KB) | DOI: 10.24912/jiksi.v7i2.7359

Abstract

PD. Sahati is a trading business that has been running since 2016. PD. Sahati has not utilized information technology effectively in its business activities. To avoid input errors, improve marketing and help with stock handling, a stock prediction sales system was made using the double exponential smoothing method and product recommendations using the a priori method.Data input for prediction is product sales data. Data used for predictions cannot be less than 3 months to maintain consistency in stock predictions. The test results from the double exponential smoothing method are indicated by the mean absolute error (MAE) and mean square error (MSE). The MAE value obtained is 0.375 and the MSE value obtained is 0.145. Data input for customer product recommendations in the form of customer transaction data are then searched for frequent itemsets based on customer transaction data and will be eliminated with a minimum value of support. The minimum support value is obtained from the number of transactions divided by 2. After that, the confidence percentage will be searched through the association rules table. The product that will be recommended later is a product that has a percentage of confidence above the minimum confidence value. The minimum value of confidence in the system is 70%.
PENERAPAN ALGORITMA MAX-MINER UNTUK ANALISIS POLA BELANJA KONSUMEN (STUDI KASUS KAFELOAJA) Marsia Marsia; Jeanny Pragantha; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 8, No 1 (2020): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (345.559 KB) | DOI: 10.24912/jiksi.v8i1.11482

Abstract

This application is used to produce combination meal for Kafeloaja in order to give the owner advices to make decision in business. In this application the method used are Max-Miner and Market Basket Analysis. Max-Miner is used to find frequent maximal itemset and the result is used to formulate association rule in Market Basket Analysis. The result of this program are menu combinations that can be used by owner to be added as new combination meal.
KLASIFIKASI EMPLOYABILITY MAHASISWA PENERIMA BEASISWA DI UNIVERSITAS TARUMANAGARA DENGAN GRAPH THEORY (MINIMUM SPANNING TREE) Edwin Leonardo; Tri Sutrisno; Dyah Erny Herwindiati
Jurnal Ilmu Komputer dan Sistem Informasi Vol 8, No 2 (2020): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (570.315 KB) | DOI: 10.24912/jiksi.v8i2.11498

Abstract

The application for classifying the employability of scholarship recipients with Graph Theory is a method for the classification of student employability. This method was made for Tarumanagara University which is used to replace the Tarumanagara University method which is still manual. There are 2 programming languages used to create this application, namely Visual Studio and Python. Visual Studio for the user interface and python for calculations. Testing is carried out by User Acceptance Testing (UAT) and amount testing. UAT test to check buttons and features and calculate testing to check whether the results of the manual method are the same as the K-Nearest Neighbor (K-NN) method before making it in a graph. From the two tests carried out it can be seen that the results of the mixed test data testing with an average accuracy of 92.5%, whereas for all scholarship test data with an average accuracy of 97.5%
PEMBUATAN E-COMMERCE BERBASIS WEB MENGGUNAKAN TIME SERIES MODEL DOUBLE MOVING AVERAGE UNTUK PREDIKSI Willy Willy; Desi Arisandi; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 8, No 2 (2020): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (185.827 KB) | DOI: 10.24912/jiksi.v8i2.11541

Abstract

PT. Sugi Jaya Mandiri adalah sebuah perusahaan perseroan terbatas yang bergerak dalam bidang penjualan barang-barang industri seperti kabel, pipa, kabel networking, perangkat lunak, besi konstruksi, suku cadang mesin produksi, dan lain sebagainya. Perusahaan memiliki masalah dalam mengelola data penjualan dan memberikan pelayanan terhadap pelanggan. Data transaksi yang diolah oleh perusahaan menggunakan sistem manual untuk pembuatan invoice dengan menggunakan Microsoft Excel. Cara ini menyulitkan perusahaan dalam merekapitulasi data transaksi dalam jumlah besar. Selain itu, pelayanan pelanggan yang dilakukan perusahaan terbatas pada penyampaian pertanyaan atau konsultasi mengenai produk melalui email, telepon, maupun whatsapp. Tidak adanya sarana dari perusahaan untuk memasarkan produk secara eifisien Mengingat jumlah pelanggan yang cukup banyak dan tidak adanya pemasaran langsung dari perusahaan, maka potensi penjualan hilang terhitung besar. Melalui aplikasi e-Commerce ini diharapkan dapat mempermudah perusahaan untuk mengolah data transaksi penjualan dengan menggunakan metode Double Moving Average. Data yang digunakan adalah data perusahaan periode 1 tahun, yaitu tahun 2017. Hasil evaluasi menggunakan metode Double Moving Average untuk mendapatkan prediksi penjualan kotor dari transaksi yang terjadi, dari hasil prediksi tersebut di datapati error hanya sebesar 4%.
ANALISIS FLUKTUASI HARGA SAHAM BLUE CHIPS DENGAN MENGGUNAKAN ALGORITMA C4.5 Yohanes Leonardus Dwi Pradipta; Desi Arisandi; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 10, No 1 (2022): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/jiksi.v10i1.17822

Abstract

In this digital era, the development of stock investment has been fairly rapid and has begun to be used as a source of livelihood for some people, especially during the pandemic. However, for some people who are not familiar with stocks, they will find it difficult to make a decision to make transactions in the stock market. Because in the stock itself, there are several categories based on their quality, ability, and reliability in various situations. With this problem, a thesis was made with the title "Analysis of Blue chip Stock Price Fluctuations Using the C4.5 Algorithm." This thesis uses stocks that are in the Blue Chip Stock category because these stocks are rated very well from all aspects and can be relied on, especially by people who are not very deep into trading in the stock world. From the existing problems, a program is needed to help people who want to make transactions by analyzing stock price fluctuations by studying their movements over a certain time span. In this program, blue chip stock data will be used, which was originally in the form of numerical data. The things that are included in the stock data are the prices of open, close, high, low, and the number of transaction volumes registered and taken from the Yahoo Finance Page. Then the stock data will be converted into data in the form of categories. This is a requirement for using the C4.5 method. The results issued from this program are in the form of stock price categories that go up, down, or even balanced. Program testing is carried out in five stages. The average accuracy that has been obtained from the five stages is 82.4%.
PERBANDINGAN METODE TOPSIS DAN SIMPLE ADDITIVE WEIGHTING UNTUK REKOMENDASI PENENTU PENERIMA BEASISWA SMA DY Julio Yan Augusto; Bagus Mulyawan; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 7, No 1 (2019): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (233.497 KB) | DOI: 10.24912/jiksi.v7i1.5921

Abstract

Aplikasi Perbandingan Metode TOPSIS dan Simple Additive Weighting untuk Rekomendasi Penentuan Penerima Beasiswa SMA DY merupakan aplikasi yang di buat bertujuan untuk memudahkan proses penentuan penerima beasiswa pada SMA DY melalui aplikasi web, yang dapat melakukan proses  pengambilan keputusan berdasarkan kriteria-kriteria yang sudah ditentukan oleh pihak sekolah dengan memberikan masing-masing bobot presentase kriterianya. Aplikasi ini dirancang dengan menggunakan Bahasa pemrograman PHP. Metode perancangan aplikasi menggunakan System Development Life Cycle. Hasil pengujian dilakukan dengan metode User Acceptance Test. Dengan adanya aplikasi ini, diharapkan sekolah SMA DY dapat menentukan penerima beasiswa dengan tepat.
SISTEM REKOMENDASI PEMILIHAN ART SHOP MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS DAN ELIMINATION ET CHOIX TRADUISANT LA REALITE (STUDI KASUS WILAYAH KABUPATEN BADUNG BALI) I Dewa Ketut Satria Wahyu Perdana; Dyah Erny Herwindiati; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 9, No 1 (2021): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (696.72 KB) | DOI: 10.24912/jiksi.v9i1.11573

Abstract

Art shops in Bali are developing, but only a few areas are known to tourists as central art shops. Lack of knowledge of tourists about art shops in an area, tourists have to go around to many art shops to get an art shop that matches the tourist criteria. To overcome the problems, it is necessary to design a computerized system, because with a computerized system, finding an art shop in the Badung Regency, Bali will be easier and faster. A computerized system can also help to see which art shop recommendations are available in an area, and what criteria are available in the art shop. The decision support system (Decision Support System / DSS) is one type of application system that is very well known among organizational management. DSS is designed and created to help management in the decision-making process and the quality of decision making, one of which is Multi Attribute Decision Making. In Multi Attribute Decision Making, there are many decision support system methods, such as the Analytical Hierarchy Process (AHP) and Elimination Et Choix Traduisant la Realité (ELECTRE). In this decision support system, it uses two methods, namely the Analytical Hierarchy Process (AHP) to determine the weight of each criteria and the next process is to rank the best attributes using the Elimination Et Choix Traduisant (ELECTRE) method. With this method, it is hoped that it can make it easier to find an Art Shop that fits the desired criteria.
ANALISIS PENDAPAT PUBLIK TERHADAP PUBLIC FIGURE DENGAN MENGGUNAKAN METODE NAIVE BAYES Januar Mansur; Viny Christanti Mawardi; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 7, No 2 (2019): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (267.13 KB) | DOI: 10.24912/jiksi.v7i2.7373

Abstract

Public Figure is a talented idol figure. For example, such as sportsmen, music players or film actors. Because it is the focus of the community, the behavior of a public figure is interesting to comment on. This is supported by the use of social media by Indonesian people such as Twitter. On the public figure page, existing comments can be analyzed to find out the sentiments of the people who are classified as positive, negative, and neutral. For a small amount of data, the comment classification process can be done manually, but if the data is too much it requires a system equipped with classification methods, so classification can be done quickly. The application of this classification will use a diagram feature, when the user types the public figure name the desired one will output the classification with a diagram. In determining the classification results will use the Naïve Bayes classification method. This application uses 6 training data classes of 2104 data with results of the system produced an accuracy of 96.47% and 6 trainng data balance of classes of 750 data with the result of the system produced an accuracy of 87.97%.
PEMBUATAN APLIKASI OPTIMASI PENJUALAN PRODUK PADA TOKO LANCAR ABADI BLORA DENGAN MENGGUNAKAN METODE LINEAR PROGRAMMING METODE SIMPLEKS Yonico Ariando Pratama; Dyah Erny Herwindiati; Tri Sutrisno
Jurnal Ilmu Komputer dan Sistem Informasi Vol 9, No 1 (2021): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI
Publisher : Fakultas Teknologi Informasi Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1572.599 KB) | DOI: 10.24912/jiksi.v9i1.11600

Abstract

Every sale is bound to experience a problem. For example, the constraints of limited storage space, budget constraints and the number of goods sold. Toko Lancar Abadi Blora also experienced similar problems in selling its products, so that often the income generated from sales was less than optimal. Based on the above problems, a method in Operations Research is needed, namely Linear Programming, the Simplex Method to solve the above problems. Linear Programming Method Simplex method can determine the optimum value of a linear problem. In a linear problem there is a linear function which can be called an objective function or a constraint function. The requirements, constraints, and constraints in linear problems are systems of linear inequalities. The calculation accuracy of the Simplex method reaches 100% by comparison with the manual calculation of 12 trial cases that have been made with 12 different months. From these results it can be concluded that the Linear Programming method Simplex method can determine the optimum result of an inequality and can be applied in the sale of goods.
Co-Authors AA Sudharmawan, AA Adinda Putri Aji Widya Putra Aminuyati Anak Agung Gede Sugianthara Andre Blenski Angga Aji Prasetyo Angga Saputra Anjas Asmara Subekti Ari Setiawan Susanto bagus Mulyawan Bambang Sutikno Baqiatush Shalihat Benny Wijaya Brian Kurniawan Widianto Bryan Daniel Pinenda Pasaribu Calvin Catur Putri Khairun Nisa Chairisni Lubis Dadang Purnama Daniel Daniel Dedi Trisnawarman Deistata Majiore Delvin Delvin Desi Arisandi Desy Arisandi Deza Farras Tsany Diaz Ridzky Anandianto Diri Anindyah Qonita Dwi Putri Diri Anindyah Qonitah Dwi Putri Dyah Erny Herwindiati Edwin Leonardo Eko Prasodjo Eko Wijaya Eni Erwantiningsih Eny Rochaida Ery Dewayani Farhan Abad Fika Alfiani Filbert Gabriel Carvenita Triasis George Timotius Harefa Gerry Geraldicky Gilbert Sanko Sunarko Glenvin Kiamidi Gusti Noorlitaria Achmad Hizkia Aristyo Christianto Hugeng I Dewa Ketut Satria Wahyu Perdana Indra Suyoto Kurniawan Irvan Lewenusa Isaias F.X.F.A. Felnditi Ivan Andrew Yoshua Januar Mansur Jeanny Pragantha Jeffrey Alexander Jessen Yaputra Setiawan Johan Tjung Jolie Felicia Jonathan Adelwin Jonathan Adrian Wibowo Joshua Saputra Joya Nur Rustiyana Judah Suryaputra Julio Yan Augusto Kelvin Kelvin Kelvin Khaleed Alhamzi Koko Prasetyo Kristopher Halim Lely Hiryanto Leonardo Josua Louis Fernando Winata M. Yoga Agustiranda Malahayati Malahayati Marsia Marsia Muhammad Farras Oktavia Nila Permata Para Mitta Purbosari Prabu Alif Anggadiputra Rabiatul Adawiyah Rayvaldi Harvian Renaldy Cahya Reyhan Rezqi Malia Rezza Adiluhung Prasetya Ricky Hansen Kurnia Rifki Ananta Pratama Ronald Lie Safrika Safrika Salma Auliannisa Seflahir Dinata Stefan Senabudy Stefanny Claudia Stella Ester Rantung Stevan Stevan Steven Steven Sumana, Axcel Lorensius Sumartono Sumartono Taria Adila Taysa Natalia Tony Tony Viny Christanti M Wasino Widi Santoso Willy Willy Witdiawati Woro Agus Nurtiyanto Yohanes Leonardus Dwi Pradipta Yonico Ariando Pratama Yosua Pandapotan Sianipar