Claim Missing Document
Check
Articles

Image Classification of Tempe Fermentation Maturity Using Naïve Bayes Based on Linear Discriminant Analysis Dio Amin Putra; Istiadi Istiadi; Aviv Yuniar Rahman
JOURNAL OF SCIENCE AND APPLIED ENGINEERING Vol 6, No 1 (2023): JSAE
Publisher : Widyagama University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jsae.v6i1.4655

Abstract

One of the foods in Indonesia that has a lot of nutritional content and benefits, one of which is tempeh. Tempe is usually made by fermenting soybeans with mold under special conditions to become tempeh. In the fermentation process, tempeh producers need to monitor the maturity of the tempeh until it is suitable for consumption. To detect this maturity requires a separate effort, so that an image processing approach is proposed in this study with the support of feature selection. An image allows for various features to be taken, such as texture features using GLCM and various color features including RGB, HSV, LAB, CMYK, YUV, HCL, HIS, LCH. With so many features, it is necessary to do a selection so that computation in its classification becomes efficient. This study aims to classify tempeh fermented images using the Naive Bayes method with Linear Discriminant Analysis (LDA)feature selection for GLCM features and eight color features. Tempe fermentation image is divided into three classes, namely raw, ripe and rotten. Based on the experimental results, the average accuracy in the test is 84.06%. In testing the fastest time is 1.87 seconds and the longest is 2.20 seconds. This shows that the classification of fermented tempeh maturity with Naive Bayes with LDA feature selection can work well.
ANALISIS PERSEPSI KUALITAS PERKULIAHAN DI LABORATORIUM PERKANTORA DAN SEKRETARI PROGRAM PENDIDIKAN VOKASI UNIVERSITAS INDONESIA Istiadi, Istiadi; Ridha, Mohammad
Jurnal Vokasi Indonesia Vol. 4, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Laboratory of the study Program is the on factor that imfluence the quality of student in the process of their study in Vocational Program . In order that, laboratory must become the crucial factor in producing qualified alumni. The quality of teaching ini laboratory in general was imfluenced some factors like: lecturer/instructur, curicullum, tools or su pported facilities in laboratory. For that reason, in this research we want to know the general of student in laboratory teaching. Factors that was identified included : degree of student satisfaction, quality of teaching, and laboratory supporting facilities . Output of this research is benefited as the input in developing the ideal office and Secretary Laboratory that sincronized with student needs.
INTERNSHIP PROGRAM IN COMPANY:CULTURAL LEARNING PROCESS FOR STUDENTS Istiadi, Istiadi
Journal of Indonesian Tourism and Policy Studies Vol. 7, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The internship program is an integral part of the Vocational School Higher Education curriculum. Various knowledge and experiences can be obtained directly as long as students carry out their internships in industries or companies. In a pandemic situation that has recently lasted for approximately two years, the internship program for students within the company is also ongoing even though with different methods and methods, namely what is called WFH (Work From Home). For students, internships are not only an opportunity to learn practical work in the world of work, internships also mean an opportunity to learn about the culture of other people or companies. The internship program is an opportunity for students to learn more about how to adapt to other people's cultures or the existing company culture. With a qualitative approach, this paper tries to explore more deeply how the internship program is a good opportunity for students to be able to know or learn about cultural issues from other people, which include: work culture, time discipline, and other existing habits in a company.
ENERGY TRANSITION AND TOURISM PROSPECTS IN INDONESIA Istiadi, Istiadi
Journal of Indonesian Tourism and Policy Studies Vol. 7, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Energy Transition is an effort to shift the use of fossil-based energy to non-fossil energy. Fossil-based energy is proven to cause pollution to the human environment. Meanwhile, non-fossil energy does not only have a positive impact on natural life so that it can have an impact on the tourism aspects of a region or country. This paper attempts to describe how the energy transition process is carried out and its relation to tourism in a region. The type of research carried out is qualitative research which originates from various secondary data both in the general media and in certain journals. As a result, clean and healthy air conditions will have a positive impact on the world of tourism in general
Identification of Tempe Fermentation Maturity Using Principal Component Analysis and K-Nearest Neighbor Istiadi, Istiadi; Rahman, Aviv Yuniar; Wisnu, Alif Dio Raka
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i1.12006

Abstract

Tempe is one of the traditional foods in Indonesia which has nutritional content and benefits that are very much favored by all Indonesian people. To determine the maturity of tempe, it is generally done by fermenting it into tempeh using a certain temperature and usually tempe entrepreneurs are done traditionally. But in this way, tempe producers do not know what temperature and humidity are right for tempeh maturity. In this study, researchers used the MATLAB R2018a application with a total data set of 137 raw data, 137 ripe data and 136 rotten data, totaling 410 tempe image data. The purpose of this research is to produce a system that can detect the ripeness of tempe using the KNN (K-Nearest Neighbor) method which is equipped with GLCM texture feature extraction, with extraction of 8 color features, using the PCA (Principal Component Analysis) selection feature. And compare the results with the same method, namely KNN (K-Nearest Neighbor) without using the PCA (Principal Component Analysis) selection feature with the required running time between the two. KNN with PCA selection feature gets an average accuracy value of 80.63% and takes 1.06 seconds. Compared with the same method, namely KNN without using the selection feature, it gets an average accuracy value of 81.67% with a time of 1.18 seconds.
Donor Collectors Route Optimisation using Genetic Algorithm Method Gigih, Priyandoko; Arofah , Siti Nur; Sahar, Nan Mad; Istiadi, Istiadi
International Journal of Electrical, Energy and Power System Engineering Vol. 3 No. 1 (2020): International Journal of Electrical, Energy and Power System Engineering (IJEEP
Publisher : Electrical Engineering Department, Faculty of Engineering, Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (567.971 KB) | DOI: 10.31258/ijeepse.3.1.1-5

Abstract

Searching for a route to take donation in terms of time and the shortest route is a must for the management because it can save time and effort. In order to make donations more efficient, a system is needed to provide recommendations for taking donation routes, one of which is using a Genetic Algorithm (GA) method. The GA can be applied in optimizing schedules, routes, and spaces. The results show that after testing two different routes with different maximum generation values of 50, 100, 500 and 1000, a maximum generation value of 50 can give optimal results.
Case Service System at the Child Welfare Institution using the Case-Based Reasoning Method Gigih, Priyandoko; Andriani , Citra; Istiadi , Istiadi; Abd Wahab , Mohd Helmy
International Journal of Electrical, Energy and Power System Engineering Vol. 3 No. 2 (2020): International Journal of Electrical, Energy and Power System Engineering (IJEEP
Publisher : Electrical Engineering Department, Faculty of Engineering, Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/ijeepse.3.2.40-45

Abstract

The Child Social Welfare Institution (LKSA) is an institution tasked with providing relief services to meet the standards of living, health, education, and the social needs of both individuals and groups. An LKSA Robbani is one of the institutions that help in handling family and child cases by National Standards for Child Care. In solving child problems, the institution must open the previous case data to determine the appropriate solution, such that the service process becomes long. Therefore, an application software is needed that can help the institution to be faster. The developed system is using the Case-Based Reasoning (CBR) Method. The advantage of this method is how to adapt the solutions of the previous case, as well as in seeking similarity in each case that the most significant similarity value is considered the most similar case. The method is very suitable for building the application. The system that was built had to do a trial before being used by the user. The trial result was carried out of the system with manual calculations using the case-based reasoning method. Furthermore, from the results of the trial, it was produced by 87.5%.
Optimasi Klasifikasi Sentimen Komentar Pengguna Game Bergerak Menggunakan Svm, Grid Search Dan Kombinasi N-Gram Iriananda, Syahroni Wahyu; Budiawan, Renaldi Widi; Rahman, Aviv Yuniar; Istiadi, Istiadi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 4: Agustus 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.1148244

Abstract

Game online telah menjadi fenomena budaya signifikan dalam industri yang berkembang pesat. Pengguna dan pengembang game menggunakan analisis sentimen untuk memahami opini dan ulasan pemain, yang membantu dalam pengembangan dan peningkatan game. Penelitian ini melakukan klasifikasi sentimen menggunakan algoritma Support Vector Machine (SVM) dengan penerapan teknik N-Gram untuk seleksi fitur. Grid Search (GS) digunakan untuk optimasi hyperparameter guna mencapai akurasi optimal. Eksperimen dilakukan dengan berbagai skenario, termasuk variasi jumlah data, pengaturan hyperparameter, rasio dataset pelatihan dan pengujian, serta konfigurasi N-Gram. Kinerja model dinilai menggunakan metrik seperti Akurasi, Presisi, Recall, dan Area di Bawah Kurva ROC (AUC). Hasil menunjukkan bahwa dengan dataset gabungan (Allgame) dan integrasi fitur seleksi N-Gram Unigram, Bigram, dan Trigram (UniBiTri), model ini mencapai akurasi 87,3%, presisi 88,5%, recall 85,5%, dan AUC 0,9081, menggunakan kernel Fungsi Basis Radial (RBF) dengan validasi silang k-fold (k=10).   Abstract   Online gaming has become a significant cultural phenomenon within a rapidly expanding industry. Game users and developers leverage sentiment analysis to understand player opinions and reviews, which subsequently guide game development and enhancements. In this study, sentiment classification was performed using the Support Vector Machine (SVM) algorithm, employing N-Gram techniques for feature selection. Grid Search (GS) was utilized for hyperparameter optimization to achieve the highest possible accuracy. To evaluate the impact of these methods, experiments were conducted across various scenarios, including different data quantities, hyperparameter settings, training and testing dataset ratios, and N-Gram configurations. The performance of the classification model was assessed using metrics such as Accuracy, Precision, Recall, and the Area Under the ROC Curve (AUC). The results of the study indicate that by using 3600 rows from a combined dataset (Allgame) and integrating Unigram, Bigram, and Trigram (UniBiTri) N-Gram selection features, along with k-fold cross-validation (k=10) and the Radial Basis Function (RBF) kernel, the model effectively classifies user reviews. Specifically, the model achieved an accuracy of 87.3%, precision of 88.5%, recall of 85.5%, and an AUC of 0.9081.
KLASIFIKASI JENIS SARUNG ADAT ILE APE MENGGUNAKAN GLCM DAN SVM Napulun, Kanisius; Istiadi, Istiadi; Yuniar Rahman, Aviv
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 4 (2024): JATI Vol. 8 No. 4
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i4.10223

Abstract

Indonesia dikenal dengan keragaman budayanya, salah satu yang terkenal adalah Kain Tenun. Menenun adalah proses pembuatan kain dengan memasukkan benang pakan secara horizontal pada benang lungsin yang telah diikat dan dicelup dengan pewarna alami, serta masih menggunakan cara tradisional. Ada empat motif sarung adat Ile Ape yaitu wate hebe, wate mea, wate tenapang, dan wate topo yang diwariskan secara turun-temurun. Kain tenun memiliki keunikan tersendiri dalam proses pembuatannya dan digunakan dalam berbagai acara seperti mahar (belis), upacara adat, pernikahan, menyambut tamu (natoni), dan pemakaman. Namun, perkembangan teknologi membuat masyarakat awam kesulitan membedakan motif-motif ini. Penelitian ini bertujuan mengatasi masalah tersebut dengan menggunakan ekstraksi fitur GLCM dan klasifikasi SVM untuk mengklasifikasi empat jenis sarung adat Ile Ape dan mengevaluasi akurasinya. Hasil terbaik diperoleh dari pengujian Kernel Gaussian dengan akurasi 97%. Temuan ini menunjukkan bahwa kombinasi GLCM dan SVM efektif untuk mendeteksi dan mengklasifikasikan kain sarung adat dengan akurasi tinggi. Penelitian ini diharapkan dapat melestarikan budaya melalui digitalisasi dan klasifikasi kain sarung adat Ile Ape.
DETEKSI KESEGERAN IKAN LAYUR BERDASARKAN CITRA MATA MENGGUNAKAN YOLOV8 Adi Saputra, Deni; Istiadi, Istiadi; Yuniar Rahman, Aviv
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 5 (2024): JATI Vol. 8 No. 5
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i5.11020

Abstract

Ikan layur (Trichiurus lepturus) ditemukan hampir di seluruh perairan laut Indonesia dan memiliki tubuh memanjang serta sangat pipih. Secara ekonomi, ikan ini merupakan komoditas ekspor penting yang menambah devisa negara, terutama karena tingginya permintaan dari pasar China dan Vietnam. Namun, penyortiran kesegaran ikan layur masih dilakukan secara konvensional dengan pengamatan manual. Ikan layur yang tidak segar dapat dikenali dari kondisi mata, warna tubuh, kondisi sisik, dan dinding perut. Penyortiran manual dirasa kurang efektif karena jumlah ikan yang harus disortir cukup banyak, rawan kesalahan human error, dan memerlukan biaya serta waktu yang besar. Penelitian ini mengusulkan pendeteksian kesegaran ikan layur berdasarkan citra mata menggunakan YOLOv8 (You Only Look Once versi 8), algoritma yang dikenal mampu melakukan pengenalan gambar dan video dengan cepat serta akurat. YOLOv8 dapat dijalankan dengan GPU, memungkinkan operasi paralel yang meningkatkan kecepatan deteksi dibandingkan dengan CPU saja. Pengolahan data melibatkan tahapan pre-processing, training, dan testing dengan data citra gambar ikan layur. Hasil pengujian menunjukkan bahwa model YOLOv8 memiliki nilai presisi 0.976, recall 0.996, dan mAP50 0.991. Akurasi masing-masing kelas adalah 0.989 untuk mata ikan layur segar dan 0.994 untuk mata ikan layur busuk. Model ini mampu mendeteksi kesegaran ikan layur dengan akurasi tinggi, memberikan hasil yang lebih efisien dan objektif dibandingkan cara manual.
Co-Authors - Faqih A.A. Ketut Agung Cahyawan W Abd Wahab , Mohd Helmy Adi Saputra, Deni Affi Nizar Suksmawati Affi Nizar Suksmawati Affi Nizar Suksmawati Agatha Korina Intaningtyas Anggarin Anggarin Ahmad Desma Syahputra Ahmad Farhan, Ahmad Ahmad Muzakky Akbar, Ismail Akhmad Nurhadi Ali Said Alif Dio Raka Wisnu Alif Dio Raka Wisnu Anderias Bai Seran Andriani , Citra Anik Yuesti Antono, Feni Budi April Lia Hananto Ardiansyah Setiawan Arie Restu Wardhani Arie Restu Wardhani Arief Rizki Fadhillah Arofah , Siti Nur Ashuri Nurdiansyah Aviv Yunia Rahman Aviv Yuniar Rahman Aviv Yuniar Rahman Aviv Yuniar Rahman Aviv Yuniar Rahman Aviv Yuniar Rahman Biaz Surya Prakasa Body Surya Permana Budiawan, Renaldi Widi Candra Zonyfar Dean Ariesta Aziz Dedi Usman Effendy Dedy Usman Effendi Diky Siswanto Diky Siswanto Dio Amin Putra Dwi Purnomo Dwi Waluyo Putranto Effendi, Dedy Usman Eka Purna Okta Danawan Elko Prayoga Elyana Estyandhika Emma Budi Sulistiarini Eska Riski Naufal Exelino Bata, Jefreydo Fachrudin Hunaini Faqih Faqih Faqih Rofii Fauzi Ahmad Muda Feni Budi Antono Ferry Irmawan Firdaus Iman Ubaidillah Firman Nurdiansyah Firman Nurdiyansyah Firman Nurdiyansyah Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marissa Galih Wicaksana Ghafur, A Hanif Saha Grace Januaria Taolin Dirma Hadian Artanto Handoko, Rizki Hermawan Suprayogi Hero Diogenes Adoe Ilham Rumaf Ilhamsyah Ilhamsyah Indra Dharma Wijaya Irfan Indra Kurniawan Irsandi Satria Wicaksana jauhar, afif Joko Wahyunarto Kartika Yuli Triastuti khusniyatul latifah Kris Inur Firman Sugiarto Kristianingrum Kristianingrum Kuncahyo Setyo Nugroho Kuncahyo Setyo Nugroho Larangga Herdianzenda Laurentino Da Costa Liliana De Deus Lutfi Erik Prasetyo Magai, Etinus Maheza Fresmanda, Muhammad Mamba’us Sa’adah MARIFANI FITRI ARISA Mochamad Tri Anjasmoros Mochammad Tirta Yovresa MOHAMMAD YUSUF Monica Putri Indrayati Monica Putri Indrayati Muhammad Agus Sahbana Muhammad Ifan Fanani Muhammad Januar Wicaksono Mukhsim, Muhamad Mustakim Mustakim Nada Zuhriyah Napulun, Kanisius Naufal, Eska Riski Niken Paramita Pradana, Muhammad Rangga Adi Priyandoko Gigih Putra Kurniawan, Rizky Putra, Rangga Pahlevi Putra, Sumartono Ali Putranto, Dwi Waluyo Rahma Fitriani Rangga Pahlevi Rangga Pahlevi Putra Rayana Jaka Surya Renaldi Widi Budiawan Ridha, Mohammad Riska Suryanti Putri Riska Suryanti Putri Riska Suryanti Putri Rivaldiknas Gampar, Philipus Rizki Handoko Rudy Joegijantoro, Rudy Sabar Setiawidayat, Sabar Sahar, Nan Mad Sandi probo sarjono Sandi Tyas Wahyu Sarina Sulaiman Silviana Silviana Syahroni Wahyu Iriananda, Syahroni Wahyu Tjiptoheriyanto, Prijono Triastuti, Kartika Yuli Ubaidillah, Firdaus Iman Udin, M Diya Wahyu Iriananda, Syahroni Wicaksono, Padang Wisnu, Alif Dio Raka Yeni Prasetio Hadi Yuliana Rachmawati Yuninda Wulan Sari Yuninda Wulan Sari