Claim Missing Document
Check
Articles

Found 34 Documents
Search

Analisis Pengaruh Gain Ratio Untuk Algoritma K-Nearest Neighbor Pada Klasifikasi Data Banjir di Kota Samarinda Sari, Septa Intan Permata; Pranoto, Wawan Joko; Verdikha, Naufal Azmi
Jurnal Sains Komputer dan Teknologi Informasi Vol. 6 No. 1 (2023): Jurnal Sains Komputer dan Teknologi Informasi
Publisher : Institute for Research and Community Services Universitas Muhammadiyah Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33084/jsakti.v6i1.5472

Abstract

Berdasarkan data yang diperoleh dari BMKG dan BPBD Kota Samarinda, diketahui bahwa telah terjadi bencana banjir pada periode tahun 2019 - 2020 di Kota Samarinda. Penelitian ini bertujuan untuk melakukan klasifikasi data banjir di Kota Samarinda menggunakan algoritma K-Nearest Neighbor dan pembagian data menerapkan teknik 5-Fold Cross-Validation serta perhitungan rumus jarak Euclidean Distance. Kemudian, dilakukan seleksi fitur pada algoritma KNN menggunakan metode Gain Ratio guna mengetahui pengaruhnya terhadap akurasi dari KNN. Hasil penelitian menunjukkan bahwa peningkatan akurasi tertinggi setelah menerapkan Gain Ratio didapatkan oleh K=7 dengan persentase kenaikan akurasi sebesar 5,95%, diikuti oleh K=5 dengan persentase kenaikan akurasi 5,81%, K=3 dengan persentase kenaikan akurasi 5,68%, K=9 sebesar 3,61%, K=11 sebesar 2,44%, dan K=13 sebesar 1,23%. Hanya ada satu akurasi yang tidak mengalami peningkatan atau penurunan akurasi, yaitu K=15.
Analisis DistilBERT dengan Support Vector Machine (SVM) untuk Klasifikasi Ujaran Kebencian pada Sosial Media Twitter Azmi Verdikha, Naufal; Habid, Reza; Johar Latipah, Asslia
METIK JURNAL Vol 7 No 2 (2023): METIK Jurnal
Publisher : LPPM Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47002/metik.v7i2.583

Abstract

Hate speech is a significant issue in content management on social media platforms. Effective classification of hate speech plays a crucial role in maintaining a safe social media environment, combating discrimination, and protecting users. This study evaluates a hate speech classification model using SVM with linear and polynomial kernels. The dataset used consists of labeled Indonesian-language tweets. The importance of developing an effective classification model to address hate speech has led to the utilization of DistilBERT as a feature extraction method. However, DistilBERT has high-dimensional features, necessitating dimensionality reduction to reduce model complexity. Therefore, in this study, the PCA dimensionality reduction method is implemented with various scenarios of dimensionality, namely 10, 20, 30, 40, and 50. Evaluation is performed using F1-Score, and the entire study is evaluated using 10-fold cross-validation. The evaluation results indicate that in the scenario with a linear kernel, the model achieves the highest F1-Score of 0.75 in the 50-dimensional scenario. Meanwhile, in the scenario with a polynomial kernel, the model achieves the highest F1-Score of 0.7857 in the 50-dimensional scenario. These findings demonstrate that the use of a polynomial kernel with 50 dimensions yields the best performance in classifying hate speech.
Analisis Kualitas Jaringan Internet Wireless LAN PT. Teladan Prima Agro Ahmad Ridhani Mubaraq; Naufal Azmi Verdikha; Muhammad Taufiq Sumadi
Jurnal Publikasi Teknik Informatika Vol 3 No 1 (2024): Januari: Jurnal Publikasi Teknik Informatika
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jupti.v3i1.2508

Abstract

The internet or interconnected networking is a network that connects computers of various types that form a network system that covers the entire world. This research aims to determine the quality of the internet network of PT Teladan Prima Agro (PT TPA). The research method used is Quality Of Service (QoS) with data retrieval techniques using Wireshark software. The results showed that the average QoS index of the PT. TPA office internet network based on the TIPHON standard obtained the result "Satisfactory". From the research results it can be concluded that the average level of internet network quality in the PT. TPA office area is in the good category and can support the performance of staff / employees in transferring data.
Analysis of FastText with Support Vector Machine for Hate Speech Classification on Twitter Social Media Nuraini, Nabila; Latipah, Asslia Johar; Verdikha, Naufal Azmi
Jurnal Informatika Vol 11, No 2 (2024): October
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v11i2.21107

Abstract

Hate speech refers to sentences or words that aim to demean or insult individuals, groups, or communities based on factors such as ethnicity, religion, race, or social class. In this study, Natural Language Processing (NLP) techniques were employed using FastText feature extraction and SVM algorithm for text classification. The evaluation was conducted using F1 Score as the performance metric. The data was divided using the Cross-Validation method with 10 folds, and the experiment was performed with four SVM kernels: RBF, Linear, Polynomial, and Sigmoid. The results of this research, based on the effectiveness of the FastTextSVM method combination, demonstrate a strong performance in hate speech classification. By adopting FastText parameters from previous studies and involving four SVM kernels, this research achieved a satisfactory average F1 Score. The results obtained for the Polynomial kernel showed the best performance with an F1 Score of 0.813, followed by the Linear kernel with 0.809, the RBF kernel with 0.808, and the Sigmoid kernel with 0.805. This indicates that the F1 Score results do not show significant differences in outcomes.
Perancangan UX (User Experience) Sistem Informasi Lifeskill Menggunakan Metode UCD di Universitas Muhammadiyah Kalimantan Timur (UMKT) Bulan Suci Cahayawati; Naufal Azmi Verdikha; Muhamad Wahyu Tirta
Pandawa : Pusat Publikasi Hasil Pengabdian Masyarakat Vol. 2 No. 1 (2024): Januari : Pandawa : Pusat Publikasi Hasil Pengabdian Masyarakat
Publisher : Asosiasi Riset Ilmu Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/pandawa.v2i1.458

Abstract

The development of information technology is important, especially in the field of education, in supporting the learning process for the better. Muhammadiyah University of East Kalimantan, which carries the IT Based Paperless concept, is one of the campuses that supports the development of information technology. SI Lifeskills was introduced to record and integrate the development of students' academic achievements, where this system helps Life Skills courses to be more organized and effective. The system development demand was carried out in order to increase needs, especially in terms of user experience (UX). This service is carried out as a form of activity to increase comfort in learning services using a User Centered Design (UCD) approach. The evaluation stages carried out in this research used Heuristic Evaluation with 10 parameter aspects. The Heuristic Evaluation test results obtained Severity Ratings 0 with 8 points and Severity Ratings 1 with 2 points. The evaluation results show that the system is comfortable to use with problems that have minimal impact on the user so that repairs are not needed if time is limited.
Integrasi PLTS Portabel "Silangat Power" Untuk Pengisian Daya Perangkat Elektronik di Dusun Masaping, Loa Duri Ulu Kabupaten Kutai Kartanegara Arbansyah; Verdikha, Naufal Azmi; Sumadi, Muhammad Taufiq; Waloyo, Hery Tri; Ilham, Muhammad Fauzan Nur
Jurnal Abdimas Mahakam Vol. 8 No. 02 (2024): Juli
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24903/jam.v8i02.3003

Abstract

Desa Masaping dan Desa Loa Duri Ulu di Kecamatan Loa Janan, Kabupaten Kutai Kartanegara, menghadapi tantangan dalam mengakses listrik yang stabil, yang berdampak pada keterbatasan penggunaan perangkat elektronik yang semakin diperlukan untuk meningkatkan kualitas hidup masyarakat. Untuk mengatasi masalah tersebut, program ini mengusulkan integrasi Pembangkit Listrik Tenaga Surya (PLTS) portabel sebagai solusi energi terbarukan yang dapat diandalkan dan ramah lingkungan. PLTS portabel ini akan diintegrasikan dengan teknologi Internet of Things (IoT) untuk memonitor dan mengoptimalkan penggunaan energi secara efisien. Tujuan utama dari program ini adalah menyediakan sumber energi alternatif yang dapat digunakan oleh masyarakat untuk mengisi daya perangkat elektronik, serta memberikan edukasi mengenai penggunaan teknologi energi terbarukan dan IoT. Metode pelaksanaan meliputi identifikasi kebutuhan energi, instalasi dan pengujian PLTS portabel, serta sosialisasi kepada masyarakat mengenai operasional dan pemeliharaan sistem. Dengan adanya program ini, diharapkan masyarakat Desa Masaping dan Desa Loa Duri Ulu dapat memperoleh akses energi yang lebih stabil dan mandiri, meningkatkan efisiensi penggunaan perangkat elektronik, serta meningkatkan kesadaran akan pentingnya energi terbarukan dan teknologi IoT. Evaluasi keberhasilan program akan dilakukan melalui pengukuran tingkat penggunaan energi, kepuasan masyarakat, serta keberlanjutan operasional sistem PLTS portabel.
Klasifikasi Ujaran Kebencian di Twitter Menggunakan Fitur Ekstraksi Glove dengan Support Vector Machine(SVM) Ahmad Ilham; Naufal Azmi Verdikha; Assliah Johar Latipah

Publisher : Program Studi Teknik Informatika, Fakultas Teknik, Universitas Yudharta Pasuruan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35891/explorit.v15i2.4108

Abstract

Twitter merupakan platform media sosial yang gratis dan bebas dipergunakan. Kebebasan tersebut mengakibatkan tidak terlepasnya banyak pengguna twitter yang membuat tweet dengan kalimat yang mengandung ujaran kebencian. Penelitian ini menggunakan fitur ekstraksi GloVe dan algoritma SVM untuk membuat model machine learning yang dapat mengidentifikasi ujaran kebencian menggunakan dataset twitter. Fokus penelitian ini adalah membandingkan kernel SVM, yaitu Sigmoid dan RBF dengan parameter C = 10 dan C=1. Model dievaluasi menggunakan F1 Score dengan teknik cross validasi untuk mengukur performa model dalam klasifikasi ujaran kebencian. Hasil penelitian menunjukkan bahwa kernel RBF dengan parameter C = 10 memiliki nilai rata-rata F1 Score tertinggi sebesar 0,682, sementara kernel sigmoid dengan parameter C = 10 memiliki nilai rata-rata F1 Score terendah sebesar 0,4520.
Klasifikasi Teks Quick Count Pemilihan Presiden 2024 pada Twitter menggunakan Metode TF-IDF dan Naive Bayes Pranata, Aditya; Rudiman, Rudiman; Verdikha, Naufal Azmi
Jurnal Informatika Terpadu Vol 10 No 2 (2024): September, 2024
Publisher : LPPM STT Terpadu Nurul Fikri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54914/jit.v10i2.1279

Abstract

The 2024 Indonesian Presidential Election generated various responses on X Twitter platform related to the Quick Count. The large number of diverse opinions makes identifying and categorizing sentiments difficult. This study aims to evaluate the accuracy of the Naive Bayes method with TF-IDF weighting in text classification regarding the Quick Count of the 2024 Presidential Election on X Twitter. Data was obtained through crawling, resulting in 2113 tweets, which experts in data labelling then labelled. The preprocessing stage includes case folding, cleansing, stopword removal, and stemming. Words are weighted using TF-IDF, and then the data is divided into 80% for training and 20% for testing. Text classification using the Naive Bayes algorithm achieved an accuracy of 74.46%, indicating a pretty good accuracy in classifying text related to the 2024 Presidential Election Quick Count on X Twitter.
Implementasi Data Mining Algoritma Apriori Pada Data Transaksi Pik Store Achmad, Arda Fahmi; Abdul Rahim; Naufal Azmi Verdikha
Jurnal Informatika Polinema Vol. 11 No. 2 (2025): Vol. 11 No. 2 (2025)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v11i2.6860

Abstract

Peningkatan laju pertumbuhan konsumen dirasa dapat dimanfaatkan oleh Pik Store untuk semakin berkembang dengan jajaran produk rekomendasi. Data dari bulan Maret hingga Juni 2023 menunjukkan banyak data transaksi yang diperoleh sebanyak 2016 data. Ruang lingkup penelitian ini adalah penerapan apriori dapat memberikan rekomendasi tata letak produk agar dapat diimplementasikan. Tujuan penelitian ini adalah mengidentifikasi pola pembelian konsumen dalam menemukan kombinasi item produk yang sering dibeli secara bersamaan menggunakan dengan metode asosiasi serta memberikan rekomendasi tata letak paket item produk berdasarkan pola pembelian yang diidentifikasi untuk meningkatkan penjualan di toko Pik Store. Metode penelitian melibatkan pengumpulan data dan penerapan algoritma Apriori untuk training dan validasi. Hasil dari penelitian ini adalah algoritma yang dapat merekomendasikan tata letak produk pada toko Pik Store. Tingkat confidence tertinggi yang didapat adalah 86% dengan rata – rata 61% dimana penulis mengatur nilai minimal support 7%. Penelitian selanjutnya diharapkan dapat mengembangkan model dengan tingkat confidence yang lebih tinggi dengan menerapkan metode yang lebih baik.
ANALISIS KLASIFIKASI ULASAN APLIKASI SIREKAP 2024 MENGGUNAKAN EKSTRAKSI FITUR DISTILBERT DAN METODE SUPPORT VECTOR MACHINE Ridhoi, Reno; Verdikha, Naufal Azmi; Yulianto, Fendy
JURNAL ILMIAH INFORMATIKA Vol 13 No 01 (2025): Jurnal Ilmiah Informatika (JIF)
Publisher : LPPM Universitas Putera Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33884/jif.v13i01.9753

Abstract

This study aims to classify reviews of the SIREKAP 2024 application automatically using the DistilBERT feature extraction method and the Support Vector Machine (SVM) algorithm. The data used includes 8,538 user reviews from the Google Play Store with five Rating categories as the target variable. After undergoing 10-Fold cross-validation, the average F1-Score obtained was 36.62%, with the highest performance reaching 37.16%. The analysis indicates that data imbalance is the main obstacle in improving the model's accuracy, particularly in the minority class. The study concludes that the combination of DistilBERT and SVM yields suboptimal results and requires further optimization. Recommendations are provided to improve model accuracy and enhance the quality of the application based on user reviews.